Около 40000 километров. Географические оболочки Земли - это системы планеты, где все компоненты внутри взаимосвязаны и определены друг относительно друга. Выделяют четыре типа оболочек - атмосферу, литосферу, гидросферу и биосферу. Агрегатные состояния веществ в них встречаются всех типов - жидкие, твердые и газообразные.

Оболочки Земли: атмосфера

Атмосфера является внешней оболочкой. В ее состав вошли разные газы:

  • азот - 78,08%;
  • кислород - 20,95%;
  • аргон - 0,93%;
  • углекислый газ - 0,03%.

Помимо них встречаются озон, гелий, водород, инертные газы, но их доля в общем объеме составляет не более 0,01%. В состав этой оболочки Земли также входит пыль и водяной пар.

Атмосфера, в свою очередь, делится на 5 слоев:

  • тропосфера - высота от 8 до 12 км, характерно присутствие водяного пара, формирование осадков, движение воздушных масс;
  • стратосфера - 8-55 км, содержит озоновый слой, поглощающий УФ-излучение;
  • мезосфера - 55-80 км, низкая по сравнению с нижней тропосферой плотность воздуха;
  • ионосфера - 80-1000 км, в состав входят ионизированные атомы кислорода, свободные электроны и другие заряженные молекулы газов;
  • верхняя атмосфера (сфера рассеяния) - более 1000 км, молекулы двигаются с огромными скоростями и могут проникать в космос.

Атмосфера поддерживает жизнь на планете, поскольку она способствует сохранению тепла на Земле. Также она не допускает проникновения прямых солнечных лучей. А ее осадки повлияли на почвообразовательный процесс и формирование климата.

Оболочки Земли: литосфера

Это твердая оболочка, слагающая земную кору. В состав земного шара входят несколько концентрических слоев с разной толщиной и плотностью. Также они имеют неоднородный состав. Усредненное значение плотности Земли - 5,52 г/см 3 , а в верхних слоях - 2,7. Это свидетельствует о том, что внутри планеты находятся более тяжелые вещества, нежели на поверхности.

Верхние литосферные слои имеют мощность 60-120 км. В них преобладают магматические горные породы - гранит, гнейс, базальт. Большинство из них в течение миллионов лет подвергалось процессам разрушения, воздействию давления, температур и превратилось в рыхлые породы - песок, глина, лёсс и т.д.

До 1200 км находится так называемая сигматическая оболочка. Основными слагающими ее веществами являются магний и кремний.

На глубинах 1200-2900 км находится оболочка, получившая название средняя полуметаллическая или рудная. В основном здесь содержатся металлы, в частности железо.

Ниже 2900 км располагается центральная часть Земли.

Гидросфера

Состав этой оболочки Земли представлен всеми водами планеты, будь то океаны, моря, реки, озера, болота, грунтовые воды. Располагается гидросфера на поверхности Земли и занимает 70% всей площади - 361 млн. км 2 .

В океане сосредоточено 1375 млн. км 3 воды, на поверхности суши и в ледниках - 25, в озерах - 0,25. По мнению академика Вернадского, большие запасы воды находятся в толще земной коры.

На поверхности суши воды задействованы в непрерывном водообмене. Испарение происходит в основном с поверхности океана, где вода - соленая. За счет процесса конденсации в атмосфере суша обеспечивается пресной водой.

Биосфера

Структура, состав и энергия этой оболочки Земли обусловливаются процессами деятельности живых организмов. Биосферные границы - поверхность суши, почвенный слой, нижняя атмосфера и вся гидросфера.

Растения распределяют и накапливают энергию Солнца в виде различных органических веществ. Живые организмы осуществляют миграционный процесс химических веществ в почве, атмосфере, гидросфере, осадочных породах. Благодаря животным в этих оболочках происходят газообмен, окислительно-восстановительные реакции. Атмосфера является также результатом деятельности живых организмов.

Оболочка представлена биогеоценозами, которые являются генетически однородными участками Земли с одним типом растительного покрова и населяющими животными. Биогеоценозы имеют свойственные для них почвы, рельеф и микроклимат.

Все оболочки Земли находятся в тесном непрерывном взаимодействии, которое выражается как обмен веществами и энергией. Исследования в области этого взаимодействия и выявление общих из принципов важно для познания почвообразовательного процесса. Географические оболочки Земли - уникальные системы, характерные только для нашей планеты.

Земля - единственная планета в нашей Солнечной системе, на которой зародилась жизнь. Во многом этому способствовало наличие у нее шести различных оболочек: атмосферы, гидросферы, биосферы, литосферы, пиросферы и центросферы. Все они ведут между собой тесное взаимодействие, которое выражается обменом энергии и материи. В данной статье мы рассмотрим их состав, основные характеристики и свойства.

Внешние оболочки Земли - это атмосфера, гидросфера, литосфера.

Газовая оболочка Земли - атмосфера, внизу она граничит с гидросферой или литосферой, а вверх простирается на 1000 км. В ней выделяются три слоя: тропосфера, которая является двигающейся; после нее находится стратосфера; за ней - ионосфера (верхний слой).

Высота тропосферы - примерно 10 км, а масса - 75% от массы атмосферы. В ней происходит перемещение воздуха горизонтальным или вертикальным способом. Выше находится стратосфера, которая простирается на 80 км вверх. Она образует слои, перемещаясь в горизонтальном направлении. За стратосферой существует ионосфера, в которой воздух непрестанно ионизируется.

Размер гидросферы - водной оболочки Земли, составляет 71% от всей поверхности планеты. Средняя соленость воды - 35 г/л. Океаническая поверхность имеет плотность примерно 1 и температуру 3-32° С. способны проникать не глубже двухсот метров, а ультрафиолетовые - на 800 м.

Сфера обитания живых организмов - биосфера, она сливается с гидросферой, атмосферой и литосферой. Верхний край биосферы поднимается до верхних шаров тропосферы, а нижний достигает дна впадин в океанах. В ней выделяют сферу животных (более миллиона видов) и сферу растений (более 500 тыс. видов).

Толщина литосферы - каменной оболочки Земли, может изменяться от 35 до 100 км. В нее входят все материки, острова и океаническое дно. Ниже под ней находится пиросфера, которая является огненной оболочкой нашей планеты. В ней наблюдается повышение температуры приблизительно на 1° С через каждые 33 метра вглубь. Вероятно, на большой глубине под влиянием огромного давления и очень высоких температур породы расплавлены и находятся в состоянии, близком к жидкому.

Расположение центральной оболочки Земли - ядра - 1800 км в глубину. Большинство ученых поддерживает версию, что оно состоит из никеля и железа. В нем температура компонентов составляет несколько тысяч градусов по Цельсию, а давление - 3000000 атмосфер. Состояние ядра пока достоверно не изучено, но известно, что оно продолжает охлаждаться.

Геосферные оболочки Земли постоянно изменяются: огненная - сгущается, а твердая - утолщается. Этот процесс в свое время спровоцировал появление каменных твердых глыб - материков. И в наше время огненная сфера не прекращает своего влияния на жизнь на планете. Ее воздействие очень велико. Постоянно меняются контуры материков, климат, океаны,

Эндогенные и влияют на непрерывное изменение твердой что воздействует на биосферу планеты.

Все внешние оболочки Земли имеют общее свойство - высокую подвижность, из-за которой малейшее изменение любой из них незамедлительно распространяется на всю ее массу. Это объясняет, почему однородность состава оболочек относительная в разное время, хоть они и подверглись значительным изменениям во время геологического развития. Например, в атмосфере, по мнению многих ученых, изначально не было свободного кислорода, но ее насыщал И позже, в результате жизнедеятельности растений, она приобрела сегодняшнее состояние. Подобным образом изменялся и состав водной оболочки Земли, что доказывают сравнительные показатели солевого состава замкнутых вод и океанических. Так же менялся и весь органический мир, в нем до сих пор происходят изменения.

Центральную часть планеты, подобную сердцевине яблока, за-нимает тяжелое ядро , состоящее в основном из железа и других металлов в твердом состоянии. Из-за немыслимо высокого дав-ления, создаваемого весом вышележащих слоев, оно стиснуто со всех сторон настолько, что не может расплавиться, несмотря на очень высокую температуру, царящую в недрах. Поэтому только внешняя часть ядра жидкая. Именно движения жидкой и твер-дой частей ядра относительно друг друга и порождают магнитное поле Земли — то самое, на которое реагирует стрелка компаса .

Ядро делится на две части: внешнее и внутреннее. Земное ядро, как предполагают, состоит из расплавленного железа, внутри которого находится твёрдое внутреннее ядро.

Мантия

Мантия (по-гречески — «покрывало») покрывает ядро. Мантия составляет основной объем нашей планеты подобно мякоти яблока. Она про-стирается от земной коры до земно-го ядра почти на 3000 км. Учёные предполагают, что мантия твёрдая и в то же время пластичная, раскалённая. Выделяют верхнюю мантию — астеносферу, и нижнюю — мезосферу.

Вещество мантии отличается от ядра по составу: если ядро мы считаем металлическим, то мантию можно назвать каменной. Ее слагают тяжелые горные породы, такие, как базальт и руды раз-личных металлов. Они хоть и тяжелые, но легче самих металлов, потому и не «потонули» глубже. Температура и давление здесь почти так же велики, как в ядре, и это приводит к тому же резуль-тату: большая часть вещества мантии удерживается в твердом со-стоянии, точнее — напоминающем густой клей. Лишь ближе к по-верхности, где давление немного «отпускает», вещество мантии становится жидким и даже может изливаться наружу через кра-теры вулканов в виде лавы. В глубинах мантийного вещества по-стоянно происходит чрезвычайно медленное тепловое перемеши-вание , подобное тому, что можно наблюдать в кастрюле с варя-щимся густым киселем. Отголоски такого перемешивания мы ощущаем в виде землетрясений: очаги землетрясений как раз об-наруживаются в верхних слоях мантии.

Через «огнедышащие горы» — вулканы — на поверхность Земли поступает мантийное вещество. Вулканические извержения до-ставляют людям множество неприятностей, однако именно вул-канам наша планета обязана своей водной и воздушной оболочка-ми.

Литосфера

Литосфера (каменная оболочка) — это са-мая верхняя оболочка Земли. Она покры-вает снаружи земной шар. Верхний слой литосферы называют зем-ной корой (рис. 42). По этой коре мы с вами ходим, на ней построены города и посёлки, по ней текут реки , в её пониже-ниях плещутся воды морей и океанов .

Поверхность земного шара разнообразна. В одних местах на многие десятки километров простираются равнинные пространства, в других — высятся го-ры , вершины которых покрыты снегом и льдом.

Толщина литосферы не везде одинакова. Под океанами её нижняя граница уходит на глубину 5-10 км, под равнинами — на 30-40 км, а под горными массивами — на 50-70 км.

В состав литосферы геологи включают всю земную кору и самые верхние участки мантии, за-стывшие под корой.

Земная кора

Тонкую наружную «кожуру» планеты (ее средняя толщина всего лишь 33 км) называют земной корой . Если сравнивать Землю с яб-локом, то кора будет даже тоньше яблочной кожуры. Еще ее мож-но сравнить с застывшей пенкой на киселе: она такая же тонкая и неоднородная. Породы земной коры находятся в твердом, застывшем со-стоянии. Нижний, глубинный слой состоит в основном из более тя-желого базальта . Сверху его покрывает слой, сложенный главным образом из более легкого гранита . Обе эти горные породы хо-рошо знакомы каждому человеку: их можно постоянно видеть на природе и на улицах города. В природе же они не часто выходят на поверхность Земли, по-тому что обычно скрыты третьим слоем — слоем осадочных по-род , который образовывался из продуктов разрушения гранитно-го слоя в течение всей истории Земли. Гранитный слой есть толь-ко на материках. За счет него земная кора здесь бо-лее толстая, но хрупкая. На дне океанов гранитного слоя нет — только базальто-вый. Так что под океанами земная кора более тонкая и пластичная.

  • Почва . Почва — это наружный слой земной коры.
  • Горные породы . Породы, слагающие земную кору, по способу их образования бывают магматические , осадочные и метаморфические . Самый нижний слой земной коры состоит из базальтов, на нём покоится гранитный слой, но только под материками. Под океанами гранитного слоя нет. В ряде мест земного шара граниты выходят на дневную поверхность.

Бурение скважин

Люди роют шахты для добычи угля и руды. Глу-бина некоторых шахт достигает 3 километров. Конечно, сама по себе эта величина не так уж велика — по сравнению с 6,5 тысячи километров, отделяющими поверхность планеты от ее центра, — и, тем не менее, известно, что, когда спускаешься в шахту, темпе-ратура повышается примерно на 3° на каждые 100 м глубины. Чем глубже, тем это увеличение температуры идет быстрее. Не-трудно рассчитать, что уже на глубине 40 км температура превы-сит тысячу градусов. А при такой температуре многие горные по-роды расплавляются в жидкость.

Сейсмический метод

Звук от ударов по земле распространяется иначе, чем по воздуху, — быстрее и дальше. Точно так же есть различия в прохождении звука по твердым и по расплавленным до жидкого состояния горным породам. Изучая «эхо», распространяющееся в глубинах планеты после специальных ударов (небольших направленных взрывов), ученые установили, что на глуби-нах от 60 до 250 километров горные породы действительно становятся частично расплавленными.

Этапы эволюционного развития Земли

Земля возникла путем сгущения преимущественно высокотемпературной фракции со значительным количеством металлического железа, а оставшийся околоземной материал, в котором железо окислилось и перешло в состав силикатов, вероятно, пошел на построение Луны.

Ранние стадии развития Земли не фиксированы в каменной геологической летописи, по которой геологические науки успешно восстанавливают её историю. Даже самые древние горные породы (их возраст отмечается громадной цифрой - 3,9 млрд. лет) являются продуктом значительно более поздних событий, наступивших после формирования самой планеты.

Ранние стадии существования нашей планеты знаменовались процессом её общепланетарной интеграции (аккумуляции) и последующей дифференциации, которые привели к образованию центрального ядра и обволакивающей его первичной силикатной мантии. Образование алюмосиликатной коры океанического и континентального типов относится к более поздним событиям, связанным с физико-химическими процессами в самой мантии.

Земля как первичная планета образовалась при температурах ниже точки плавления её материала 5-4,6 млрд. лет назад. Земля возникла путем аккумуляции как химически относительно однородный шар. Она представляла собой сравнительно однородную смесь частиц железа, силикатов, меньше сульфидов, распределенных по всему объему довольно равномерно.

Большая часть её массы образовалась при температуре ниже температуры конденсации высокотемпературной фракции (металлической, силикатной), т. е. ниже 800° К. В целом завершение формирования Земли не могло происходить ниже 320° К, что диктовалось расстоянием от Солнца. Удары частиц в процессе аккумуляции могли поднять температуру рождающейся Земли, но количественная оценка энергии этого процесса не может быть произведена достаточно надежно.

С начала формирования молодой Земли отмечался её радиоактивный нагрев, вызванный распадом быстро вымирающих радиоактивных ядер, включая некоторое количество трансурановых, сохранившихся от эпохи ядерного синтеза, и распадом ныне сохранившихся радиоизотопов и.

В общей радиогенной атомной энергии в ранние эпохи существования Земли было достаточно для того, чтобы её материал местами стал плавиться с последующей дегазацией и подъемом легких компонентов в верхние горизонты.

При относительно однородном размещении радиоактивных элементов с равномерным распределением радиогенного тепла по всему объему Земли максимальный рост температур происходил в её центре с последующим выравниванием по периферии. Однако в центральных областях Земли давление было слишком высоким для плавления. Плавление в результате радиоактивного нагрева началось на некоторых критических глубинах, где температура превысила точку плавления какой-то части первичного материала Земли. При этом железный материал с примесью серы начал плавиться скорее, чем чисто железный или силикатный.



Все это произошло геологически довольно быстро, поскольку огромные массы расплавленного железа не могли находиться долго в неустойчивом состоянии в верхних частях Земли. В конце концов, все жидкое железо стекло в центральные области Земли, образовав металлическое ядро. Внутренняя часть его перешла в твердую плотную фазу под влиянием высокого давления, сформировав маленькое ядро глубже 5000 км.

Асимметричный процесс дифференциации материала планеты начался 4,5 млрд. лет тому назад, который привел к появлению континентального и океанического полушарий (сегментов). Не исключено, что полушарие современного Тихого океана было тем сегментом, в который массы железа погружались к центру, а в противоположном полушарии воздымались с поднятием силикатного материала и последующим выплавлением более легких алюмосиликатных масс и летучих компонентов. В легкоплавких фракциях материала мантии сосредоточились наиболее типичные литофильные элементы, поступившие вместе с газами и парами воды на поверхность первичной Земли. Большая часть силикатов при завершении планетарной дифференциации образовала мощную мантию планеты, а продукты её выплавления дали начало развитию алюмосиликатной коры, первичного океана и первичной атмосферы, насыщенной СО 2 .

А. П. Виноградов (1971) на основании анализа металлических фаз метеоритного вещества считает, что твердый железоникелевый сплав возник независимо и непосредственно из паровой фазы протопланетного облака и конденсировался при 1500° С. Железоникелевый сплав метеоритов, по мнению ученого, имеет первичный характер и соответствующим образом характеризует металлическую фазу земных планет. Железоникелевые сплавы довольно высокой плотности, как полагает Виноградов, возникли в протопланетном облаке, спекались благодаря большой теплопроводности в отдельные куски, которые падали к центру газово-пылевого облака, продолжая непрерывно конденсационный рост. Только масса железоникелевого сплава, независимо конденсировавшаяся из протопланетного облака, могла образовать ядра планет земного типа.

Высокая активность первичного Солнца создавала в окружающем пространстве магнитное поле, способствовавшее намагничиванию ферромагнитных веществ. К числу их относятся металлическое железо, кобальт, никель, отчасти сернистое железо. Точка Кюри – температура, ниже которой вещества приобретают магнитные свойства, – для железа равна 1043° К, для кобальта – 1393° К, для никеля – 630° К и для сернистого железа (пирротина, близкого к троилиту) – 598° К. Поскольку магнитные силы для мелких частиц на много порядков превосходят гравитационные силы притяжения, зависящие от масс, то аккумуляция частиц железа из охлаждающейся солнечной туманности могла начаться при температурах ниже 1000° К в виде крупных сгущений и была во много раз эффективнее, чем аккумуляция силикатных частиц при прочих равных условиях. Сернистое железо ниже 580° К также могло аккумулироваться под влиянием магнитных сил вслед за железом, кобальтом и никелем.

Основной мотив зонального строения нашей планеты был связан с ходом последовательной аккумуляции частиц разного состава – сначала сильно ферромагнитных, затем слабоферромагнитных и, в конце концов, силикатных и других частиц, накопление которых диктовалось уже преимущественно силами гравитации выросших массивных металлических масс.

Таким образом, основной причиной зонального строения и состава земной коры явился быстрый радиогенный нагрев, определивший повышение его температуры и способствовавший в дальнейшем локальному плавлению материала, развитию химической дифференциации и ферромагнитных свойств под влиянием солнечной энергии.

Стадия газово-пылевого облака и образования Земли как сгущения в этом облаке . Атмосфера содержала Н и Не , происходила диссипация этих газов.

В процессе постепенного разогрева протопланеты происходило восстановление окислов железа и силикатов, внутренние части протопланеты обогащались металлическим железом. В атмосферу выделялись различные газы. Образование газов происходило за счет радиоактивных, радиохимических и химических процессов. В атмосферу выделялись первоначально главным образом инертные газы: Ne (неон), Ns (нильсборий), СО 2 (окись углерода), Н 2 (водород), Не (гелий), Аг (аргон), Кг (криптон), Хе (ксенон). В атмосфере создавалась восстановительная обстановка. Возможно, шло и некоторое образование NH 3 (аммиак) за счет синтеза. Затем в атмосферу помимо указанных начали поступать кислые дымы – СО 2 , H 2 S , HF , SO 2 . Происходила диссоциация водорода и гелия. Выделение водяных паров и образование гидросферы обусловливали снижение концентраций хорошо растворимых и химически активных газов (CO 2 , H 2 S , NH 3 ). Состав атмосферы соответственно изменялся.

Через вулканы и другими путями продолжалось выделение из магмы и магматических пород водяных паров, СО 2 , СО , NH 3 , NO 2 , SO 2 . Происходило также выделение Н 2 , О 2 , Не , Аг , Ne , Kr , Xe за счет радиохимических процессов и превращений радиоактивных элементов. В атмосфере постепенно накоплялись СО 2 и N 2 . Появилась небольшая концентрация О 2 в атмосфере, но присутствовали в ней также СН 4 , H 2 и СО (из вулканов). Кислород окислял эти газы. По мере остывания Земли водород и инертные газы поглощались атмосферой, удерживались земным притяжением и геомагнитным полем, как и другие газы первичной атмосферы. Вторичная атмосфера содержала в себе некоторый остаток водорода, воду, аммиак, сероводород и носила резко восстановительный характер.

При образовании прото-Земли, вся вода была в различной форме связанной с веществом протопланеты. По мере того как из холодной протопланеты формировалась Земля и постепенно повышалась её температура, вода все более входила в состав силикатного магматического раствора. Часть её при этом испарялась из магмы в атмосферу, а затем и диссипировала. По мере охлаждения Земли диссипация водяных паров ослабевала, а затем практически прекратилась совсем. Атмосфера Земли стала обогащаться содержанием водяных, паров. Однако атмосферные осадки и возникновение водоемов на поверхности Земли стали возможны лишь значительно позднее, когда температура на поверхности Земли стала ниже 100°С. Снижение температуры на поверхности Земли до величины менее чем 100°С было, несомненно, скачком в истории гидросферы Земли. До этого момента вода в земной коре находилась лишь в химически и физически связанном состоянии, составляя вместе с породами единое неделимое целое. Вода находилась в виде газа или горячего пара в атмосфере. По мере того как температура поверхности Земли становилась ниже 100°С, на её поверхность стали образовывались довольно обширные неглубокие водоемы, в результате выпадения обильных дождей. С этого времени на поверхности стали формироваться моря, а затем и первичный океан. В породах Земли, наряду со связанной водой застывающей магмой и возникших магматических пород появляется свободная капельножидкая вода.

Охлаждение Земли способствовало возникновению подземных вод, которые значительно различались по химическому составу между собой и поверхностными водами первичных морей. Земная атмосфера, возникшая при охлаждении начального горячего вещества из легколетучих материалов, паров и газов, стала основой для образования атмосферы и воды в океанах. Возникновение воды на земной поверхности способствовало процессу возникновения атмосферной циркуляции воздушных масс между морем и сушей. Неравномерное распределение по земной поверхности солнечной энергии стало причиной атмосферной циркуляции между полюсами и экватором.

В земной коре формировались все существующие элементы. Восемь из них – кислород, кремний, алюминий, железо, кальций, натрий, калий и магний – составили по весу и числу атомов более 99 % земной коры, а на долю всех остальных пришлось менее 1 %. Главная масса элементов рассеяна в земной коре и лишь небольшая часть их образовала скопления в виде месторождений полезных ископаемых. На месторождениях элементы обычно не встречаются в чистом виде. Они образуют природные химические соединения – минералы. Лишь не многие – сера, золото и платина – могут накапливаться в чистом самородном виде.

Горная порода, это материал, из которого построены участки земной коры с более или менее постоянным составом и строением, состоящий из скопления нескольких минералов. Основным, породообразующим процессом в литосфере, является вулканизм (рис. 6.1.2). На большой глубине магма находится в условиях высокого давления и температуры. Магма (греч. «густая грязь») состоит из ряда химических элементов или простых соединений.

Рис. 6.1.2. Извержение вулкана

При падении давления и температуры химические элементы и их соединения постепенно «упорядочиваются», формируя прообразы будущих минералов. Как только температура понизится на столько, что начнется затвердевание, из магмы начинают выделяться минералы. Это выделение сопровождается процессом кристаллизации. В качестве примера кристаллизации приведем формирование кристалла поваренной соли NaCl (рис. 6.1.3).

Рис.6.1.3. Структура кристалла поваренной соли (хлористого натрия). (Маленькие шары – атомы натрия, большие – атомы хлора.)

Химическая формула свидетельствует, что вещество построено из одинакового числа атомов натрия и хлора. Атомов хлористого натрия в природе нет. Вещество хлористого натрия построено из молекул натрий хлор. Кристаллы каменной соли состоят из чередующихся вдоль осей куба атомов натрия и хлора. При кристаллизации, благодаря электромагнитным силам каждый из атомов в структуре кристалла стремится занять свое место.

Кристаллизация магмы происходила в прошлом и происходит сейчас при извержении вулканов в различных природных условиях. Когда магма затвердевает на глубине, тогда процесс её охлаждения идет медленно, возникают зернистые хорошо раскристаллизованные породы, которые называют глубинными. К ним относятся граниты, диариты, габбро, сияниты и перидотиты. Часто под влиянием активных внутренних сил Земли магма изливается на поверхность. На поверхности лава охлаждается гораздо быстрее, чем на глубине, поэтому условия для образования кристаллов менее благоприятны. Кристаллы менее прочные и быстро превращаются в метаморфические, рыхлые и осадочные породы.

В природе нет минералов и горных пород существующих вечно. Любая горная порода когда-то возникла и когда-нибудь её существованию приходит конец. Она не исчезает бесследно, а превращается в другую горную породу. Так, при разрушении гранита его частицы дают начало слоям песка и глины. Песок, будучи погружен в недра, может превратиться в песчаник и кварцит, а при более высоком давлении и температуре дать начало граниту.

В мире минералов и горных пород идет своя особая «жизнь». Есть минералы близнецы. Например, если обнаружен минерал «свинцовый блеск», то рядом с ним всегда окажется минерал «цинковая обманка». Такими же близнецами являются золото и кварц, киноварь и антимонит.

Есть минералы «враги» – кварц и нефелин. Кварц по составу соответствует кремнезему, нефелин – алюмосиликату натрия. И хотя кварц очень широко распространен в природе и входит в состав многих пород, но он не «терпит» нефелина и некогда в месте с ним не встречается. Секрет антагонизма связан с тем, то нефелин недонасыщен кремнеземом.

В мире минералов известны случаи, когда один минерал оказывается агрессивным и развивается за счет другого, при изменении условий среды.

Минерал, попадая в иные условия, иногда оказывается недоустойчивым, и замещается другим минералом с сохранением первоначальной формы. Такие превращения часто происходят с пиритом, по составу соответствующим двусернистому железу. Обычно он образует кубические кристаллы золотистого цвета с сильным металлическим блеском. Под влиянием кислорода воздуха пирит разлагается в бурый железняк. Бурый железняк не образует кристаллов, но, возникая на месте пирита, сохраняет форму его кристалла.

Такие минералы шутливо называют «обманщиками». Научное их название – псевдоморфозы, или ложные кристаллы; форма их не характерна для слагающего минерала.

Псевдоморфозы свидетельствуют о сложных взаимоотношениях между разными минералами. Не всегда просты отношения и между кристаллами одного минерала. В геологических музеях вы, наверно, не раз восхищались красивыми сростками кристаллов. Такие сростки называются друзами, или горными щетками. На месторождениях минералов они являются объектами азартной «охоты» любителей камня – и начинающих, и опытных минералогов (рис. 6.1.4).

Друзы очень красивы, поэтому вполне понятен такой интерес к ним. Но дело не только во внешней привлекательности. Давайте посмотрим, как образуются эти щетки кристаллов, выясним, почему кристаллы своей вытянутостью всегда располагаются более или менее перпендикулярно к поверхности нарастания, почему в друзах нет или почти не бывает кристаллов, которые лежали бы плашмя или росли косо. Казалось бы, при образовании «зародыша» кристалла он должен лечь на поверхность нарастания, а не становиться на ней вертикально.

Рис. 6.1.4. Схема геометрического отбора растущих кристаллов при образовании друзы (по Д. П. Григорьеву).

Все эти вопросы хорошо объясняет теория геометрического отбора кристаллов известного минералога - профессора Ленинградского горного института Д. П. Григорьева. Он доказал, что на образование друз кристаллов влияет ряд причин, но в любом случае растущие кристаллы взаимодействуют друг с другом. Одни из них оказываются «слабее», поэтому их рост вскоре прекращается. Более «сильные» продолжают расти, и чтобы их не «стесняли» соседи, они тянутся вверх.

Каков же механизм образования горных щеток? Каким путем многочисленные разноориентированные «зародыши» превращаются в небольшое число крупных кристаллов, расположенных более или менее перпендикулярно к поверхности нарастания? Ответ на этот вопрос можно получить, если внимательно рассмотреть строение друзы, состоящей из зонально окрашенных кристаллов, то есть таких, в которых изменения окраски выдают следы роста.

Присмотримся к продольному разрезу друзы. На неровной поверхности нарастания виден ряд зародышей кристаллов. Естественно, что удлинения их соответствуют направлению наибольшего роста. Вначале все зародыши, независимо от ориентировки, росли с одинаковой скоростью в направлении вытянутости кристаллов. Но вот кристаллы начали соприкасаться. Наклоненные быстро оказались стиснутыми своими вертикально растущими соседями, для них не оставалось свободного пространства. Поэтому из массы разноориентированных мелких кристаллов «выживали» только те, которые были расположены перпендикулярно или почти перпендикулярно к поверхности нарастания. За сверкающими холодным блеском друзами кристаллов, хранящихся в витринах музеев, скрывается долгая, полная коллизий жизнь...

Еще одно замечательное минералогическое явление – кристалл горного хрусталя с пучками включений минерала рутила. Большой ценитель камня А. А. Малахов говорил, что «когда поворачиваешь этот камень в руках, кажется, что заглядываешь на морское дно сквозь глубины, пронизанные солнечными нитями». Такой камень на Урале называют «волосатиком», а в минералогической литературе он известен под пышным именем «Волос Венеры».

Процесс формирования кристаллов начинается на некотором удалении от очага огненной магмы, когда в трещины горных пород попадают горячие водные растворы с кремнием и титаном. В случае понижения температур раствор оказывается пересыщенным, из него одновременно выпадают кристаллы кремнезема (горный хрусталь) и окиси титана (рутил). Этим и объясняется пронизывание горного хрусталя иглами рутила. Минералы кристаллизуются в определенной последовательности. Иногда они выделяются одновременно, как при образовании «Волос Венеры».

В недрах Земли и в настоящее время идет колоссальная разрушительная и созидательная работа. В цепях бесконечных реакций рождаются новые вещества – элементы, минералы, горные породы. Магма мантии устремляется из неведомых глубин в тонкую оболочку земной коры, прорывает её, стремясь найти выход на поверхность планеты. Волны электромагнитных колебаний, потоки нейронов, радиоактивные излучения струятся из земных недр. Именно они стали одними из главных в зарождении и развитии жизни на Земле.

Антропогенное воздействие на природу в настоящее время проникает во все сферы , поэтому необходимо кратко рассмотреть характеристику отдельных оболочек Земли.

Земля состоит из ядра, мантии, земной коры, литосферы, гидросферы и . За счет воздействия живого вещества и деятельности человека возникли еще две оболочки - биосфера и ноосфера, включающая техносферу. Деятельность человека распространяется на , гидросферу, литосферу, биосферу и ноосферу. Кратко рассмотрим эти оболочки и характер воздействия деятельности человека на них.

Общая характеристика атмосферы

Внешняя газообразная оболочка Земли. Нижняя часть контактирует с литосферой или , а верхняя - с межпланетным пространством. состоит из трех частей:

1. Тропосфера (нижняя часть ) и ее высота над поверхностью составляет 15 км. Тропосфера состоит из , плотность которого с высотой уменьшается. Верхняя часть тропосферы контактирует с озоновым экраном - слоем озона толщиной 7-8 км.

Озоновый экран предотвращает попадание на поверхность Земли (литосферу, гидросферу) жесткого ультрафиолетового излучения или космического излучения с высокой энергией, которые губительны для всего живого. Нижние слои тропосферы - высотой до 5 км от уровня моря - являются воздушной средой обитания, при этом наиболее плотно заселены самые нижние слои - до 100 м от поверхности суши или . Самое большое воздействие от деятельности человека, имеющее наибольшее экологическое значение, испытывает тропосфера и особенно ее нижние слои.

2. Стратосфера - средний слой , пределом которого является высота в 100 км над уровнем моря. Стратосфера заполнена разреженным газом (азотом, водородом, гелием и т.д.). Она переходит в ионосферу.

3. Ионосфера - верхний слой , переходящий в межпланетное пространство. Ионосфера заполнена частицами, возникающими при распаде молекул, - ионами, электронами и т.д. В нижней части ионосферы возникает «северное сияние», которое наблюдается в районах, находящихся за Полярным кругом.

В экологическом отношении наибольшее значение имеет тропосфера.

Краткая характеристика литосферы и гидросферы

Поверхность Земли, находящаяся под тропосферой, неоднородна - часть ее занята водой, которая образует гидросферу, а часть является сушей, образующей литосферу.

Литосфера - внешняя твердая оболочка земного шара, образованная каменными породами (поэтому и название - «литое» - камень). Она состоит из двух слоев - верхнего, образованного осадочными породами с гранитом, и нижнего, образованного твердыми базальтовыми породами. Часть литосферы занята водой (), а часть является сушей, составляющей около 30% земной поверхности. Самый верхний слой суши (в большинстве своем) покрыт тонким слоем плодородной поверхности - почвой. Почва является одной из сред жизни, а литосфера - субстратом, на котором проживают различные организмы.

Гидросфера - водная оболочка земной поверхности, образованная совокупностью всех водоемов, имеющихся на Земле. Толщина гидросферы различна на разных участках, но средняя глубина океана составляет 3,8 км, а в отдельных впадинах - до 11 км. Гидросфера является источником воды для всех организмов, живущих на Земле, она является мощной геологической силой, осуществляющей круговорот воды и других веществ, «колыбелью жизни» и средой обитания водных организмов. Антропогенное воздействие на гидросферу также велико и будет рассмотрено ниже.

Общая характеристика биосферы и ноосферы

С момента появления жизни на Земле возникла новая, специфическая оболочка - биосфера. Термин «биосфера» был введен Э. Зюссом (1875).

Биосфера (сфера жизни) - та часть оболочек Земли, в которых живут различные организмы. Биосфера занимает часть (нижнюю часть тропосферы), литосферы (верхнюю часть, включая почву) и пронизывает всю гидросферу и верхнюю часть донной поверхности.

Биосферу можно определить и как геологическую оболочку, населенную живыми организмами.

Границы биосферы определяются наличием условий, необходимых для нормальной жизнедеятельности организмов. Верхняя часть биосферы ограничена интенсивностью ультрафиолетового излучения, а нижняя - высокой температурой (до 100°С). Споры бактерий встречаются на высоте 20 км над уровнем моря, а анаэробные бактерии обнаружены на глубине до 3 км от земной поверхности.

Известно, что образованы живым веществом. Концентрацией живого вещества характеризуется плотность биосферы. Установлено, что наибольшая плотность биосферы характерна для поверхности суши и океана на границе соприкосновения литосферы и гидросферы с атмосферой. Очень высока плотность жизни в почве.

Масса живого вещества по сравнению с массой земной коры и гидросферы мала, но играет огромную роль в процессах изменения земной коры.

Биосфера - это совокупность всех биогеоценозов, имеющихся на Земле, поэтому она считается высшей экосистемой Земли. В биосфере все взаимосвязано и взаимообусловлено. Генофонд всех организмов Земли обеспечивает относительную стабильность и возобновляемость биологических ресурсов планеты, если в природные экологические процессы не будет резкого вмешательства различных сил геологического или межпланетного характера. В настоящее время, как это было указано выше, антропогенные факторы воздействия на биосферу приняли характер геологической силы, что необходимо учитывать человечеству, если оно хочет выжить на Земле.

С момента появления на Земле человека в природе возникли антропогенные факторы, действие которых усиливается с развитием цивилизации, и возникла новая специфическая оболочка Земли - ноосфера (сфера разумной жизни). Термин «ноосфера» впервые был введен Э. Леруа и Т. Я. де Шарденом (1927), а в России впервые в своих трудах использовал В. И. Вернадский (30-40-е гг. XX в.). В трактовке термина «ноосфера» различают два подхода:

1. «Ноосфера - это та часть биосферы, где реализуется хозяйственная деятельность человека». Автор этой концепции Л. Н. Гумилев (сын поэтессы А. Ахматовой и поэта Н. Гумилева). Эта точка зрения справедлива, если необходимо выделить в биосфере деятельность человека, показать ее отличие от деятельности других организмов. Такое понятие характеризует «узкий смысл» сущности ноосферы как оболочки Земли.

2. «Ноосфера - это биосфера, развитие которой направляется человеческим разумом». Данное понятие широко представлено в и является понятием в широком понимании сущности ноосферы, так как влияние человеческого разума на биосферу может носить как позитивный, так и негативный характер, причем последний очень часто преобладает. В состав ноосферы входит техносфера - часть ноосферы, связанная с производственной деятельностью человека.

На современном этапе развития цивилизации и численности народонаселения необходимо именно «разумно» влиять на Природу, оптимально воздействовать на нее с тем, чтобы приносить минимальный вред природным экологическим процессам, восстанавливать разрушенные или нарушенные биогеоценозы, да и на жизнедеятельность человека как составной части биосферы. Деятельность человека неизбежно вносит изменения в окружающий мир, но, учитывая возможные последствия, предвидя возможные негативные воздействия, необходимо сделать так, чтобы эти последствия были наименее разрушительными.

Краткая характеристика чрезвычайных ситуаций, возникающих на поверхности Земли, и их классификация

Важную роль в природных экологических процессах играют чрезвычайные ситуации, постоянно возникающие на поверхности Земли. Они разрушают местные биогеоценозы, и, если повторяются циклически, то в ряде случаев являются экологическими факторами, способствующими протеканию эволюционных процессов.

Ситуации, при которых затрудняется или становится невозможным нормальное функционирование большого количества людей или биогеоценоза в целом, называются чрезвычайными.

Понятие «чрезвычайные ситуации» в большей степени применимо к деятельности человека, но оно относится и к природным сообществам.

По происхождению чрезвычайные ситуации разделяют на природные и антропогенные (техногенные).

Природные чрезвычайные ситуации возникают в результате явлений природного характера. К ним относят наводнения, землетрясения, оползни, сели, ураганы, извержения и др. Рассмотрим некоторые явления, вызывающие чрезвычайные ситуации природного характера.

Это внезапное освобождение потенциальной энергии земных недр, приобретающее форму ударных волн и упругих колебаний (сейсмических волн).

Землетрясения возникают главным образом за счет подземных вулканических явлений, смещения пластов друг относительно друга, но могут иметь и техногенный характер и возникать за счет обвала выработок полезных ископаемых. При землетрясениях происходят смещения, колебания и вибрация горных пород от сейсмических волн и тектонических движений земной коры, что приводит к разрушению поверхности - появлению трещин, разломов и т. д., а также к возникновению пожаров, разрушению зданий.

Оползни - скользящее смещение пород вниз по уклону с наклонных поверхностей (гор, холмов, морских террас и т. д.) под действием силы тяжести.

При оползнях нарушается поверхность, гибнут биоценозы, разрушаются населенные пункты и т. д. Наибольший ущерб наносят очень глубокие оползни, глубина которых превышает 20 метров.

Вулканизмом (извержениями вулканов) называют совокупность явлений, связанных с движением магмы (расплавленной массы пород), горячих газов и паров воды, поднимающихся по каналам или трещинам земной коры.

Вулканизм является типичным природным явлением, вызывающим большие разрушения природных биогеоценозов, приносящим огромный ущерб хозяйственной деятельности человека, сильно загрязняющим прилегающего к вулканам региона. Извержения вулканов сопровождаются другими катастрофическими природными явлениями - пожарами, оползнями, наводнениями и др.

Сели - это кратковременные бурные паводки, несущие большое количество песка, гальки, крупного щебня и камней, имеющие характер грязекаменных потоков.

Сели характерны для горных районов и могут наносить значительный ущерб хозяйственной деятельности человека, служить причиной гибели различных животных и вызывать разрушение местных растительных сообществ.

Снежными лавинами называют обвалы снега, увлекающие за собой все новые и новые массы снега и других сыпучих материалов. Лавины бывают как природного, так и антропогенного происхождения. Они наносят большой ущерб хозяйственной деятельности человека, разрушая дороги, линии электропередач, вызывая гибель людей, животных и растительных сообществ.

Вышерассмотренные явления, являющиеся причиной возникновения чрезвычайных ситуаций, тесно связаны с литосферой. В гидросфере также возможны природные явления, создающие чрезвычайные ситуации. К ним относят наводнения и цунами.

Наводнения - это затопление водой местности в пределах речных долин, побережий озер, морей и океанов.

Если наводнения носят строго периодический характер (приливы, отливы), то в этом случае природные биогеоценозы приспособлены к ним как к среде обитания в определенных условиях. Но часто наводнения бывают неожиданными и связанными с отдельными непериодическими явлениями (избыточное выпадение снега зимой создает условия для возникновения обширных паводков, вызывающих затопление большой площади и т. д.). При наводнениях нарушаются почвенные покровы, может происходить заражение местности различными отходами за счет размыва их хранилищ, гибель животных, растений и людей, уничтожение населенных пунктов и т. д.

Гравитационные волны большой силы, возникающие на поверхности морей и океанов.

Цунами имеют природные и техногенные причины. К природным причинам относят землетрясения, моретрясения и подводные извержения вулканов, к техногенным - подводные ядерные взрывы.

Цунами вызывают гибель судов и аварии на них, что в свою очередь приводит к загрязнению природной среды, например, разрушение танкера, транспортирующего нефть, приведет к загрязнению огромной водной поверхности нефтяной пленкой, ядовитой для планктона и пеларгических форм животных (планктон - взвешенные мелкие организмы, живущие в поверхностном слое воды океана или другого водоема; пеларгические формы животных - животные, свободно перемещающиеся в толще воды за счет активного передвижения, например, акулы, киты, головоногие ; бентосные формы организмов - организмы, ведущие придонный образ жизни, например камбала, раки отшельники, иглокожие, прикрепленные к дну водоросли и др.). Цунами вызывают сильное перемешивание вод, перенос организмов в несвойственную им среду обитания и гибель.

В также происходят явления, вызывающие чрезвычайные ситуации. К ним относят ураганы, смерчи, различные виды бурь.

Ураганы - тропические и внетропические циклоны, у которых сильно понижено давление в центре, сопровождаются возникновением ветров, обладающих большой скоростью и разрушительной силой.

Различают слабые, сильные и экстремальные ураганы, которые вызывают появление ливней, морских волн и разрушение наземных объектов, гибель различных организмов.

Вихревые бури (шквалы) - атмосферные явления, связанные с возникновением сильных ветров, обладающих большой разрушительной силой и значительной территорией распространения. Различают снежные, пыльные и беспыльные бури. Шквалы вызывают перенесение верхних слоев почвы, их разрушение, гибель растений, животных, разрушение сооружений.

Смерчи (торнадо) - вихреобразная форма движения воздушных масс, сопровождающаяся возникновением воздушных воронок.

Сила смерчей велика, в области их движения наблюдается полное уничтожение почвы, гибнут животные, разрушаются постройки, предметы переносятся с одного места на другое, вызывая поражение объектов, находящихся там.

Кроме охарактеризованных выше природных явлений, приводящих к возникновению чрезвычайных ситуаций, существуют и другие явления, их вызывающие, причина которых - деятельность человека. К антропогенным чрезвычайным ситуациям относят:

1. Аварии на транспорте. При нарушении правил движения на различных магистралях (автомобильных, железнодорожных, речных, морских) происходит гибель транспортных средств, людей, животных и т. д. В природную среду попадают различные вещества, в том числе и те, которые приводят к гибели организмов всех царств (например, пестициды и др.). В результате аварий на транспорте возможно возникновение пожаров и попадание в газов (хлороводорода, аммиака, пожаро- и взрывоопасных веществ).

2. Аварии на крупных предприятиях. Нарушение технологических процессов, несоблюдение правил эксплуатации оборудования, несовершенство технологии могут служить причиной выброса в окружающую среду вредных соединений, вызывающих различные заболевания человека и животных, способствующих появлению мутаций в организмах растений и животных, а также привести к разрушениям зданий и возникновению пожаров. Наиболее опасны аварии на предприятиях, использующих . Большой вред наносят аварии на атомных электростанциях (АЭС), так как кроме обычных поражающих факторов (механические разрушения, выброс вредных веществ однократного действия, пожары) для аварий на АЭС характерно поражение местности радионуклидами, проникающей радиацией и радиус поражения в этом случае значительно превышает вероятность возникновения аварий на других предприятиях.

3. Пожары, охватывающие значительные территории лесов или торфяников. Как правило, такие пожары носят антропогенный характер из-за нарушения правил обращения с огнем, но могут иметь и природный характер, например за счет грозовых разрядов (молнии). Причиной подобных пожаров могут быть и нарушения в линиях электропередач. Пожары уничтожают на больших территориях природные сообщества организмов, наносят большой экономический ущерб хозяйственной деятельности человека.

Все охарактеризованные явления, нарушающие природные биогеоценозы, приносящие большой ущерб хозяйственной деятельности человека, требуют разработки и принятия мер по уменьшению их негативного воздействия, что реализуется при осуществлении природоохранных действий и борьбы с последствиями чрезвычайных ситуаций.