Правильные многоугольники с глубокой древности считались символом красоты и совершенства. Из всех многоугольников с заданным числом сторон наиболее приятен для глаза правильный многоугольник, у которого равны все стороны и равны все углы. Одним из таких многоугольников является квадрат или другими словами, квадрат- это правильный четырехугольник.
Дать определение квадрату можно несколькими способами: квадрат - это прямоугольник, у которого все стороны равны и квадрат - это ромб, у которого все углы прямые.

Из школьного курса геометрии известно:
1 у квадрата все стороны равны,
2 все углы прямые,
3 диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
4 Квадрат обладает симметрией, которая придает ему простоту и известное совершенство формы: квадрат служит эталоном при измерении площадей всех фигур.
Это малая часть того, что можно раскрыть в этом вопросе, потому что современной математике известно достаточно много интересных и полезных свойств квадрата. Поэтому целью данного реферата является:
1 подробнее исследовать свойства квадрата,
2 рассмотреть геометрические способы раскроя квадрата,
3 обосновать возможности превращений фигур при помощи разрезания квадрата,
4 найти различные варианты построений, которые можно воспроизвести при помощи перегибания квадратного листа бумаги, и выявить преимущества в таком виде построений.
При изучении данной темы использовались статьи из книг и журналов, посвященных отдельным вопросам метематики.
В. Ф. Каган «О преобразовании многогранников». В этой книге приводится доказательство теоремы Ф. Больаи на примере квадрата.
В книге «Удивительный квадрат» Б.А. Кордемского и Н.В. Русалева подробно изложены доказательства некоторых свойств квадрата, приведены пример «совершенного квадрата» и решение одной задачи на разрезание квадрата арабским математиком Х века Абулом Вефой.
В книге И. Лемана «Увлекательная математика» собрано несколько десятков задач, среди которых есть и такие, возраст которых исчисляется тысячелетиями. Из этой книги в реферате были использованы задачи на разрезания квадрата.
Книги Я.И. Перельмана принадлежат к числу наиболее доступных из книг, посвященных занимательной математике. В книге «Занимательная геометрия» популярно изложен вопрос о фигурах с наибольшей площадью при данном периметре или с наименьшим периметром при данной площади.
Для полного представления о построении при помощи перегибания квадратного квадрата листа бумаги была использована книга И.Н. Сергеева «Примени математику».

ГЛАВА Ι. 1.1 ЗАМЕЧАТЕЛЬНЫЕ СВОЙСТВА КВАДРАТА
У квадрата есть два практичных свойства:
Периметр квадрата меньше периметра любого равновеликого ему прямоугольника,
Площадь квадрата больше площади любого прямоугольника с тем же периметром.

Рис.1
В своей книге «Удивительный квадрат» Б.А. Кордемский и Н.В. Русалев подробно описывают доказательства этих свойств.
Для доказательства первого свойства был сравнен периметр квадрата АВСD, со стороной x, данной площади (рис.1) с каким-либо прямоугольником ВЕFG,с большей стороной y, той же площади. Очевидно, что y больше x, ; тогда другая сторона z непременно меньше x. По чертежу видно, что АВЕК- общая часть и для квадрата и для прямоугольника; остаются два равновеликих прямоугольника АКFG и КЕСD, т.е. АG.FG = DС.КD. Но так как FGKD или y-x > x-z. Отсюда y+z>2x и 2y+2z>4x, то есть периметр любого прямоугольника, равновеликого квадрату, больше периметра квадрата. Значит, среди всех равновеликих прямоугольников квадрат обладает наименьшим периметром.
Для доказательства второго свойства авторы книги использовали метод, когда доказывают обратные теоремы - от противного.
Дан квадрат, периметр которого равен p, а площадь равна q.Пусть существует прямоугольник, периметр которого тоже равен p, а площадь Q>q. Затем авторы построили новый квадрат, равновеликий этому прямоугольнику, то есть с площадью, тоже равной Q, и, следовательно, большей, чем площадь данного квадрата. Но по предыдущей теореме периметр нового квадрата p Эти свойства можно считать практичными, потому что их можно использовать в жизненных ситуациях. Например, если нужно огородить изгородью, забором или решёткой участок земли определённой площади так, чтобы длина ограды была насколько возможно малой, причём огороженный участок должен быть прямоугольной формы, но с любым соотношением сторон. В переводе на точный, математический язык это значит: какой из прямоугольников данной площади имеет наименьший периметр?
В книге «Занимательная геометрия» Я.И. Перельмана приведены примеры и популярно изложены вопросы о фигурах с наибольшей площадью при данном периметре или с наименьшим периметре при данной площади

1.2 КВАДРАТ В КВАДРАТЕ
У квадрата, вписанного в квадрат, есть некоторые особенности.
а) б) в)
Рис. 2.
Если соединить последовательно середины сторон квадрата АВСD (рис.2,а) отрезками, то получится новый квадрат ЕFКL, площадь которого составляет половину площади данного квадрата АВСD.
Если отрезать четыре прямоугольных треугольника, расположенных по углам квадрата АВСD. Сумма их площадей также составляет половину площади квадрата АВСD. Если принять площадь квадрата АВСD за единицу, то сумма площадей отрезанных треугольников равна Ѕ.
Если в оставшийся квадрат ЕРКL таким же образом вписать квадрат A B C D (рис. 2, б) и опять отрезать четыре треугольных уголка. Сумма площадей отрезанных треугольников составит Ѕ площади квадрата
ЕFKL и, значит, ј площади квадрата АВСD. Повторяя этот приём (рис.2,в), получается еще четвёрка треугольников, сумма площадей которых составит ⅛ площади квадрата АВСD.
Применяя этот приём любое число раз, будет получаться всё новые четвёрки прямоугольных треугольников, которыми снова можно выложить первоначальный квадрат. Суммы площадей четвёрок треугольников представляют бесконечный ряд чисел
Ѕ, ј ,⅛…

1.3 СОВЕРШЕННОЕ КВАДРИРОВАНИЕ
Эта любопытная задача долгое время не была решена, и многие думали, что её решить невозможно.
По содержанию это задача о составлении квадрата из нескольких квадратов, но на этот раз без разрезания их на части и усложнённая ещё требованием, чтобы стороны квадратов выражались неповторяющимися целыми числами. Число данных квадратов безразлично.



Рис.3
Деление квадрата на конечное число не налагающихся друг на друга квадратов, никакие два из которых не равны, называется совершенное квадрирование квадрата, а квадрат, составленный из неповторяющихся квадратов, - совершенным квадратом
Некоторые математики высказывали предположение, что совершенное квадрирование квадрата невозможно. Одним из таких математиков был Г. Штейнгауз, который утверждал в своей книге «Математический калейдоскоп», что «неизвестно, можно ли разбить квадрат на неповторяющиеся квадраты».
Так как это только допускалось математиками, но не было доказано, то поиски решения продолжались, и немногим более десяти лет тому назад в зарубежных математических журналах появились, наконец, квадраты, составленные из неповторяющихся квадратов. В своей книге «Удивительный квадрат» Кордемский Б.А. и Русалев Н.В. представили квадрат, состоящий из 26 неодинаковых квадратов(Рис.3). (Цифры, проставленные на рисунке, означают длины сторон соответствующих квадратов). Кордемский и Русалев пишут, что можно составить квадрат также и из 28 неповторяющихся квадратов и т. д.
Не вполне выясненным остаётся пока ещё вопрос о том, является ли 26 - наименьшим возможным числом квадратов для составления совершенного квадрата.

ГЛАВА ΙΙ. 2.1 ЗАДАЧА РАЗРЕЗЫВАНИЯ КВАДРАТА
Квадрат очень похож на механизм с хорошо прилаженными частями, который можно разобрать и из тех же частей собрать новый механизм.
Для того чтобы из готовых частей квадрата составить его снова или составить несколько иных, заранее указанных фигур, не нужны какие-либо расчёты и построения.
Из готовых частей квадрата можно сложить не только многоугольники, но и составить прямоугольный или равносторонний треугольник, правильный пятиугольник или шестиугольник, три или пять квадратов и т. д.
На языке геометрии это значит: найти те геометрические построения, при помощи которых разрезается квадрат, и доказать, что из полученных частей может быть составлена требуемая фигура.
Такая постановка вопроса сразу превращает каждую головоломку в более интересную, но и более трудную геометрическую задачу на «разрезывание» фигур. Своеобразие подобного рода задач в их некоторой неопределённости. Для примера, сформулируем головоломку из книги «Увлекательная математика» И.Лемана как следующую геометрическую задачу: показать, каким образом нужно разделить данный квадрат прямолинейными разрезами, чтобы переложением полученных частей можно было составить три сплошных квадрата, равных между собой.
В этой задаче ничего не сказано о том, как разрезать данный квадрат и на сколько частей,— отсюда и неопределённость.
Желательно, чтобы число разрезов было возможно меньшим, хотя заранее это число неизвестно, и неизвестно также, может ли оно быть установлено какими-либо предварительными расчётами. Обычно число делений зависит от способа разрезывания, то есть от тех геометрических построений, которые были применены при решении задачи.
В поисках наименьшего числа делений можно применять разнообразные приёмы построений и получать тем самым различные решения одной и той же задачи на разрезывание данной фигуры. Таким образом, при решении подобного рода задач открывается широкая возможность проявления находчивости и инициативы, развития геометрической интуиции.

2.2 КАК АБУЛ ВЕФА СОСТАВИЛ КВАДРАТ ИЗ ТРЁХ РАВНЫХ КВАДРАТОВ
Задачами превращения одной фигуры в другую путём переложения разрезанных частей занимались ещё в древние времена. Возникли они из потребностей практиков-землемеров и строителей архитектурных сооружений древнего мира. Появились практические приёмы и правила, не обоснованные доказательствами, и естественно, что многие из них были неверны, ошибочны.
Один из самых замечательных арабских математиков Абул Вефа, живший в X веке, решил целый ряд вопросов, относящихся к геометрическому превращению фигур. В сочинении «Книга о геометрических построениях», дошедшем до нас не полностью, в списках его учеников, Абул Вефа пишет:
«В настоящей книге мы займёмся разложением фигур; вопрос этот необходим многим практикам и составляет предмет особенных их разысканий. К таким вопросам мы приходим, когда требуется разложить квадраты так, чтобы получились меньшие квадраты, или когда из нескольких квадратов требуется составить большой квадрат. Ввиду этого мы дадим основные начала, которые относятся к данным вопросам, так как все методы, применяемые рабочими, не основанные на каких-либо началах, не заслуживают доверия и весьма ошибочны; между тем на основании таких методов они производят различные действия».
На одном из собраний геометров и практиков Абул Вефе была предложена задача:
Составить квадрат из трёх равных квадратов.
Абул Вефа разрезал квадраты I и II по диагоналям и каждую из половинок приложил к квадрату III, как показано на рис. 4.



Рис.4

Затем он соединил отрезками прямых вершины Е, F, G и Н. Полученный четырёхугольник ЕFGН оказался искомым квадратом.
Доказательство сразу следует из равенства образовавшихся маленьких треугольников HLK, ЕКD и остальных таких же (НL=ED;углы HLK и EDK- по 45є и углы HKL и EKD равные).
Приведённое решение, по словам Абул Вефы, «точно и вместе с тем удовлетворяет практиков».

2.3 ВОЗМОЖНОСТЬ ПРЕВРАЩЕНИЙ КВАДРАТА
Решая головоломки и задачи на превращение квадрата в другую равновеликую ему фигуру путем разрезания или, наоборот, какого-либо многоугольника в квадрат, тем самым устанавливается возможность такого превращения.
Возникают вопросы, как далеко распространяется эта способность квадрата перекраиваться в другую фигуру без всякой потери площади.
Можно ли перекроить квадрат в любой желаемый многоугольник той же площади или, что то же самое,— можно ли любой многоугольник перекроить в равновеликий ему квадрат?
Ответ на эти вопросы даёт следующая теорема:
Всякий многоугольник можно превратить в равновеликий ему квадрат. Эта теорема рассматривается только для простых многоугольников.
В книге В.Ф. Каган «О Преобразовании многогранников» подробно описано доказательство теоремы Ф. Больан.
Основные ступени доказательства теоремы о возможности преобразования многоугольника в квадрат сформулировать в виде нескольких лемм:
1. Всякий многоугольник можно разрезать на некоторое определённое число треугольников.
2. Всякий треугольник равносоставлен с некоторым параллелограммом(два многоугольника называются равносоставленными, если один из них можно разрезать на такие части, которые, будучи сложены иначе, дают второй многоугольник.
Таким образом, каждый из треугольников, на которые рассекается многоугольник, можно превратить в параллелограмм.
Далее:
3. Всякий параллелограмм можно превратить в квадрат.
4. Если два многоугольника порознь могут быть превращены в третий, то первый может быть превращён во второй («свойство транзитивности»).
Из лемм 2, 3 и 4 следует пятая:
5. Всякий треугольник можно превратить в равновеликий ему квадрат.
6. Каждые два квадрата можно превратить в один.
Превращая каждые два квадрата в один, получается в конце концов один квадрат, который и будет равносоставлен с данным многоугольником.
В этом заключается доказательство возможности превращения многоугольника в квадрат, которая описывается в книге В.Ф. Кагана.

ГЛАВА ΙΙΙ. 3.1 ПОСТРОЕНИЯ ПРИ ПОМОЩИ ПЕРЕГИБАНИЯ КВАДРАТНОГО ЛИСТА БУМАГИ

Среди множества возможных действий с бумагой особое место занимает операция ее перегибания. Одним из достоинств этой операции является то, что ее можно производить, не имея под рукой никаких дополнительных инструментов - ни линейки, ни циркуля, ни даже карандаша. С помощью перегибания бумаги можно не только делать забавные или интересные игрушки, но и получать наглядное представление о многих фигурах на плоскости, а также об их свойствах
Практические свойства бумаги порождают своеобразную геометрию. Роль линий в этой геометрии будут играть края листа и складки, образующиеся при его перегибах, а роль точек - вершины углов листа и точки пересечения складок друг с другом или с краями листа. Оказывается, возможности операции перегибания листа очень велики. То, что они включают в себя всю геометрию одной линейки, не вызывает сомнения, Но они в определенной степени таят в себе также и возможности циркуля, хотя и не позволяют проводить непосредственно дуги окружности.

а) б)

Исследуем некоторые свойства квадрата. Линия сгиба, проходящая через два противоположных угла квадрата, есть диагональ этого квадрата. Другая диагональ получается перегибом квадрата через другую пару противоположных углов, как это показано на рис 5а (линии внутри квадрата являются линиями сгиба). Каждая диагональ делит квадрат на два совпадающих при наложении треугольника, вершина которых находятся в противоположных углах квадрата. Эти треугольники равнобедренные и прямоугольные, так как каждый из них имеет по прямому углу.
Если перегнуть бумажный квадрат пополам, чтобы одна сторона совпадала с противоположною ей. Получится сгиб, проходящий через центр квадрата (рис.5б). Линия этого сгиба обладает следующими свойствами:
1) она перпендикулярна двум другим сторонам квадрата,
2) делит эти стороны пополам,
3) параллельно двум первым сторонам квадрата,
4) сама делится в центре квадрата пополам,
5) делит квадрат на два совпадающих при наложении прямоугольника, 6) каждый из этих прямоугольников равновелик (т. е. равен по площади) одному из треугольников, на которые квадрат делиться диагональю.
Если перегнуть квадрат еще раз так, чтобы совпадали две другие стороны, то полученный сгиб и сделанный раньше разделят квадрат на 4 совпадающих при наложении квадрата.
Пользуясь этими свойствами можно выполнять различные построения и превращения. Например, получить правильный шестиугольник. На рис.6а представлен образец орнамента из равносторонних треугольников и шестиугольников, полученных перегибанием квадратного листа бумаги. Эти многие другие построения подробно описываются и в книге «Примени математику» И.Н. Сергеева.



а) б)
Рис.6.

Можно разделить шестиугольник на равные правильные шестиугольники и равносторонние треугольники, делая перегибы через точки, делящие его стороны на три равные части. Получается красивый симметричный орнамент. Также при помощи перегибания квадратного листа бумаги можно построить биссектрису угла.

Рис.7
Следует отогнуть бумагу по прямым ВС и АВ (не на лицевую сторону), а затем перегибанием совместить отогнутый край ВС с отогнутым краем АВ. Получившийся сгиб ВD и будет биссектрисой угла АВС.(Рис.7)
При помощи перегибания квадратного листка бумаги можно произвести и довольно сложные построения. Например, произвести «золотое сечение» стороны данного квадратного куска бумаги при помощи только перегибаний.
Кстати, на основе перегибания квадратного листка бумаги возникло искусство оригами - складывание фигурок из бумаги (рис.8). Древнее искусство пришло из Китая, откуда Япония черпала духовные богатства. Квадрат выступает как оригинальный конструктор; его трансформируют бесконечно.


ГЛАВА ΙV. 4.1 ТАНГРАМ И ДРУГИЕ ГОЛОВОЛОМКИ,
СВЯЗАННЫЕ С КВАДРАТОМ.
История головоломки "Танграм":

Головоломка "Танграм" - квадрат, разрезанный на 7 частей из которых составляют различные силуэты. Он появился в Китае в конце восемнадцатого века (рисунок). Первое ее изображение (1780 г.) обнаружено на ксилографии японского художника Утамаро, где две девушки складывают фигурки "чи чао ту" - так называется ташрам на его родине (в переводе - умственная головоломка из семи частей"). Название танграм возникло в Европе вероятнее всего от слова "тань" (на кантонском диалекте - китаец) и часто встречающегося греческого корня "грамма" (буква). Впрочем, авторы многих книг по занимательной математике приписывают изобретение танграма якобы жившему 4 тысячи лет назад в Китае ученому Тангу. Эта тщательно разработанная легенда от начала до конца выдумана изобретательным автором головоломок Сэмом Лойдом.
Вероятно, эти части квадрата первоначально служили для демонстрации фигур, потому что можно легко составить из частей квадрата прямоугольник, параллелограмм, трапецию и т. д. С течением времени было замечено, что из этих частей можно составить множество фигур-силуэтов (рис.9) самой причудливой формы, употребляя для составления каждой фигуры все семь частей квадрата. Изображение схематично, но образ легко угадывается по основным характерным признакам предмета, его строению, пропорциональному соотношению частей и форме. Составлять силуэты достаточно сложно. Сначала нужно найти сходство элементов с предметами, буквами и т.п. Затем можно составить силуэты игрушек, мебели, транспорта, животных.
Так создалась увлекательная игра-головоломка «танграм», получившая широкое распространение, в особенности на своей родине - в Китае. Там эта игра известно так же широко, как, например, у нас шахматы. Устраиваются даже специальные состязания на составление с наименьшей затратой времени.
Рисунки, составленные из частей танграма:

Рис.9
Пентамино Эта игра была придумана в 50-х годах ХХ в. американским математиком С. Голомбом. Она заключается в складывании различных фигур из заданного набора пентамино. Набор содержит 12 фигурок, каждая из которых составлена из 5 одинаковых квадратов.

ЗАКЛЮЧЕНИЕ
Квадрат - это неисчерпаемая фигура, применяемая во многих сферах и имеющая свойства, интересные для каждого, кто стремится расширить рамки своих геометрических представлений.
В результате проделанной работы можно сформулировать несколько выводов:
1) периметр квадрата меньше периметра любого равновеликого ему прямоугольника;
2) площадь квадрата больше площади любого прямоугольника с тем же периметром;
3) при помощи разрезаний можно произвести превращения различных многоугольников в квадрат. Было установлено, что упражнения в разрезании квадрата и конструировании фигур из полученных частей являются не только полезной геометрической забавой, но имеют и практический смысл: они могут помочь будущим и настоящим новаторам производства, в рациональном раскрое материалов, в использовании обрезков кожи, ткани, дерева и т. п., для превращения их в полезные вещи;
4) при помощи перегибания квадратного листа бумаги можно выполнять различные построения, не имея под рукой никаких инструментов - ни линейки, ни циркуля, ни даже карандаша;
5) существуют занимательные игры, в которых используется квадрат.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1) Б.А. Кордемский, Н.В. Русалев «Удивительный квадрат». Москва-Ленинград, 1952 г.
2) В.Ф. Каган «О преобразовании многогранников». Гостехиздат, 1933 г.
3) Г. Штейнгауз «Математический калейдоскоп». Гостехиздат, 1949 г.
4) Е.И. Игнатьев « В царстве смекалки». Москва «Наука», 1981 г.
5) З.А. Михайлова «Игровые занимательные задачи для дошкольников». Москва «Просвещение», 1990 г.
6) И. Леман «Увлекательная математика». Москва «Наука» 1978 г.
7) И.Н. Сергеев «Примени математику». Москва «Наука», 1989 г.
8) «Квант» 1989. №5 - С. 40.
9) Р. Хонсбергер «Математические изюминки». Москва «Наука», 1992 г.
10) Я.И. Перельман «Живая математика». Москва «Наука», 1977 г.
11) Я.И Перельман «Занимательная геометрия». Москва «АСТ», 2003 г.

Равные фигуры складывают, используя одновременно и голубые треугольники, и треугольники других цветов. Помощь черных линий невелика; голубые фигуры и фигуры других цветов упорядочивают, располагая рядом друг с другом; фигуры равной площади располагают рядом друг с другом и окружают их границей из тесемки, отделяя таким образом от других фигур. Подходящие тесемки находятся в корзинках в ящиках с конструктивными треугольниками; посредством передвижения и опрокидывания фигур найти другие формы; из всех треугольников складывать произвольные геометрические фигуры; сложить геометрическую фигуру возможно большей площади; образовать сколь возможно меньшее количество четырехугольников. Занятие с треугольниками дают широкие возможности для познания благодаря многочисленным взаимосвязям отдельных фигур друг с другом;

    рисование, раскрашивание, вырезание фигур; упорядочивание фигур, имеющих равную площадь; упорядочивание фигур, имеющих одинаковый цвет и форму; цветные треугольники кладут на соседний стол, голубые лежат на ковре. Ребенок оставляет метку рядом с каким-нибудь голубым треугольником и приносит соответствующий цветной треугольник.
Устный урок. Названия фигур уже были даны в упражнениях с геометрическим комодом, так как фигуры материала конструктивные треугольники всегда составлены из двух или нескольких частей. Применение:
    проводится известная коллективная игра с другими заданиями, например: "Я вижу то, что ты не видишь. Оно треугольное, оно квадратное, оно прямоугольное"; ребенок выбирает четырехугольник и ищет предмет похожей формы в своем окружении, например, он берет прямоугольник и находит прямоугольную поверхность стола; плоская фигура при помощи тесемок разбивает на треугольники.
Ребенок понимает, что прямоугольник можно составить из двух треугольников. Подобные упражнения нужно проводить с фигурами из всех остальных ящиков. Треугольный ящик. Как работать с материалом. Треугольники лежат вперемешку на ковре. Учитель кладет серый равносторонний треугольник перед ребенком Он предлагает ребенку из оставшихся треугольников выбрать те, которые одинаковы по цвету и форме, и сложить их друг с другом. Учитель берет два зеленых треугольника и складывает их черными линиями друг к другу. Затем поступает так же с желтыми и красными треугольниками. Ребенок узнает, как построить равносторонний треугольник из прямоугольных, тупоугольных и равносторонних треугольников. Наконец, он кладет серый треугольник на каждый из построенных треугольников и показывает этим, что все они равны. Контроль над ошибками. Черные линии и серый равносторонний треугольник. Дальнейшие упражнения:
    сложить из всех треугольников один большой равносторонний треугольник; сложить другие большие фигуры, например, трапецию, ромб, параллелограмм; составной треугольник положить на цветную и обвести, убирая затем поочередно маленькие треугольники, из которых он состоит. Проводить карандашом каждый раз вдоль освободившихся сторон. Полученные треугольники вырезать; серый равносторонний треугольник обвести и вырезать. Отдельные части, например, красные треугольники, обвести и вырезать. Поэкспериментировать с ними и найти при этом фигуры, имеющие равные площади, но различную форму. Большой шестиугольный ящик.
Как работать с материалом. Все треугольники лежат вперемешку на столе. Учитель кладет перед ребенком большой желтый треугольник. Он проводит по черным линиям и просит ребенка приложить к большому треугольнику другие желтые треугольники соответственно черным линиям. Получается шестиугольник. Затем учитель убирает большой желтый треугольник. Ребенок кладет на освободившееся место другие желтые треугольники. Красные треугольники складываются друг с другом. Получается ромб. Ребенок старается различными способами наложить его на шестиугольник. Затем ребенок кладет вплотную друг к другу серые треугольники так, чтобы получился параллелограмм. Его можно сравнить с ромбом и шестиугольником. Построение шестиугольника из треугольников и ромбов. Контроль над ошибками. Черные линии и сравнение с составными фигурами. Дальнейшие упражнения:
    сложить большие фигуры, например, треугольник, трапецию; комбинации с фигурами из треугольного ящика; при помощи переворачивания и наложения друг на друга найти фигуры, имеющие равные площади, но различную форму. Маленький шестиугольный ящик
Как работать с материалом. Треугольники лежат вперемешку на ковре. Ребенок сортирует их по цвету и форме. Учитель кладет желтый треугольник на середину ковра. Он предлагает приложить к этому треугольнику три красных треугольника. Так получается шестиугольник. Затем учитель убирает желтый треугольник. Освободившееся место ребенок заполняет другими красными треугольниками. Потом учитель предлагает ребенку сложить друг с другом серые треугольники. Ребенок сравнивает два шестиугольника. Наконец, ребенок складывает друг с другом зеленые треугольники по черным линиям так, чтобы получилась трапеция. Ребенок пробует всевозможными способами наложить эту трапецию на красный и серый шестиугольники. Из равносторонних красных треугольников ребенок составляет ромб и различными способами накладывает его на красный и серый шестиугольники. Контроль над ошибками. Черные линии и сравнение с составными шестиугольниками. Дальнейшие упражнения: - комбинации со всеми ящиками. Составить возможно большее число фигур одинаковой формы, например, шестиугольников, квадратов, прямоугольников. Построение шестиугольников из треугольников, трапеций. 3.4.4. ГЕОМЕТРИЧЕСКИЕ ТЕЛА Материал: Корзина, платок, 9 синих геометрических тел: шар, эллипсоид, яйцо, цилиндр, пирамида, конус, параллелепипед, куб, трехгранная призма. Ящик с дощечками в форме оснований перечисленных геометрических тел: 3 квадрата, 2 круга, 2 прямоугольника, 1 равносторонний треугольник 1 равнобедренный треугольник. Прямая цель: обратить внимание на геометрические тела и их характерные особенности. Косвенная цель: подготовка к стереометрии. Возраст: около трех лет. Как работать с материалом. Учитель выбирает различные тела, например, шар, конус, куб. Он поворачивает их в руках и старается со всей очевидностью показать различия между ними, катая и опрокидывая их. Нужно обратить внимание на искривленные и плоские поверхности. Постепенно в упражнение включаются все тела. Контроль над ошибками происходит при работе над материалом. Устный урок. Катать - опрокидывать. Целесообразно провести этот устный урок перед дальнейшими упражнениями. Дальнейшие упражнения:
    тела лежат в накрытой корзине. Ребенок засовывает в нее руку, ощупывает какое-либо тело, говорит, катается это тело или опрокидывается, и вытаскивает его наружу; ребенок закрывает глаза. Учитель дает ему какое-либо тело. Ребенок ощупывает его и возвращает учителю, который кладет его среди других тел. Ребенок открывает глаза и должен теперь без ощупывания вновь узнать это тело; ребенок формирует множество (группы) тел, которые только катаются, которые могут стоять, которые могут стоять и кататься. Игра, в которой проясняются представления о множествах. Разделяющее множество!
Применение:
    ребенок ищет предметы из своего окружения, которые катаются или опрокидываются, и упорядочивает их в соответствии с этими свойствами; на двух ковриках лежит каждый раз по одном геометрическому телу. Ребенок ищет предмет похожей формы: например, на шар похожи мяч, бусина, клубок пряжи; на куб - детский кубик, какой-нибудь ящик.
Как работать с материалом. Для введения дощечек, имеющих форму оснований геометрических тел, учитель берет дощечки из ящика и кладет из на стол. Он выбирает какое-либо геометрическое тело, сравнивает его нижнее основание с дощечками и подбирает соответствующую ему дощечку. Точно так же он поступает со всеми остальными геометрическими телами. Три дощечки остаются лишними, так как одно геометрическое тело может иметь различные основания. Их нужно затем дополнительно расположить около соответствующих тел. Контроль над ошибками. Дощечки, повторяющие форму оснований тел, и соответствующие основания тел должны совпадать. Устный урок. Названия различных тел сообщают на трехступенчатом уроке. Начинают с известных тел, например, с шара, куба. Дальнейшие упражнения:
    поставить на одно основание все тела, которые ему соответствуют; найти множество тел с прямоугольным основанием или боковой гранью. Игра, в которой проясняются представления о множествах; найти тело с прямоугольной и квадратной боковыми гранями; построить ряд из всех тел так, чтобы два стоящие рядом тела имели что-нибудь общее; тела раздают детям. Один ребенок произносит их названия, другие дети приносят тела; тела, названия которых известны ребенку, кладут в корзину и накрывают платком. Ребенок ощупывает тело, называет его и вынимает из корзины; назвать тело и найти его в закрытой корзине.
Применение. Два коврика. На каждом лежит одно геометрическое тело, например, цилиндр и куб. Ребенок выбирает похожие тела из Монтессори-материалов и упорядочивает их. Ребенок обнаруживает, что в Монтессори-материалах часто встречаются геометрические тела. 3.5. МАТЕРИАЛЫ ДЛЯ РАЗЛИЧЕНИЯ СТРУКТУРНЫХ ПОВЕРХНОСТЕЙ И МАТЕРИАЛОВ 3.5.1. КЛАВИШНАЯ ДОСКА (ШЕРОХОВАТЫЙ - ГЛАДКИЙ) Материал: Доска (24 см х 12 см), которая разделена на 2 квадрата. Один квадрат гладко отлакирован, другой обтянут шершавой бумагой. Доска (24 см х 12 см), которая разделена на 9 равных полос. Они попеременно отлакированы или обтянуты шершавой бумагой. Прямая цель: развитие осязания. Узнать различные качества поверхностей. Косвенная цель: развитие тонкой моторики, подготовка к письму. Возраст: около трех лет. Как работать с материалом. Учитель берет первую доску. Он показывает, как пальцами одной руки с расслабленным запястьем медленно и легко сверху вниз проводят сначала по одной, потом по другой поверхности. Делает это несколько раз. Ребенок повторяет упражнение. Затем учитель берет вторую доску, снова легко касается поверхности, но теперь уже только указательным и средним пальцами, так как промежуток очень узок. Начинает с одного края доски и переходит затем от одного к другому промежутку. Чувствительность концов пальцев можно повысить с помощью мытья рук в теплой воде. Касание должной быть легким, словно пальцы парят над поверхностью. Контроль над ошибками: различные качества шершавой и гладкой поверхностей. Дальнейшие упражнения. Прикоснуться сначала ко всем шершавым, затем во всем гладким поверхностям. Устный урок. Шершавый - гладкий. Учитель закрывает глаза, касается пальцами шершавой поверхности и говорит: "Шершавая". Лучшая концентрация при касании. Затем он касается гладкой поверхности и говорит: "Гладкая". Он делает это несколько раз и побуждает повторить ребенка (1-я ступень). "Покажи мне шершавую, покажи мне гладкую!" (2-я ступень). Учитель спрашивает ребенка: " Какая на ощупь эта поверхность?" Ребенок отвечает: "Шершавая". "Какая на ощупь другая поверхность?" - "Гладкая"(3-я ступень). Применение. Учитель предлагает ребенку: "Найти в комнате что-нибудь шершавое!"; "Найди что-нибудь гладкое!" 3.5.2. ДОСКА ДЛЯ ОЩУПЫВАНИЯ (КРУПНЫЙ - МЕЛКИЙ) Материал: ящик с 10 досками (10 см х 9 см), которые оклеены шершавой бумагой 5 сортов. Они одинаковы попарно. Прямая цель: развитие осязания, узнать различные качества шершавых поверхностей. Косвенная цель: развитие тонкой моторики. Возраст: около трех лет. Как работать с материалом . Учитель кладет обе серии отдельно на стол. Он выбирает из одной серии табличку, щупает ее, затем ищет путем ощупывания подходящую табличку в другой серии и кладет ее рядом. Так он поступает со всеми остальными табличками. Затем предлагает ребенку повторить упражнение. Для нетренированного ребенка число пар можно уменьшить. Это упражнение малыш делает с открытыми глазами очень быстро, так как каждая пара отличается от другой также по цвету. При дальнейшей работе учитель берет одну серию досок и смешивает их. Теперь он ищет доску с самой крупнозернистой поверхностью и кладет ее в сторону. Из оставшихся досок он снова выбирает доску с самой крупнозернистой поверхностью и кладет ее рядом с первой. Так упражнение продолжают, пока не получится равномерно упорядоченный ряд. Контроль над ошибками: через повторный контроль при помощи осязания и визуально. Дальнейшие упражнения : Градацию начинают не с контрастов, а в середины ряда. Устный урок. Он посвящен следующим понятиям: крупный - мелкий, крупный - крупнее - самый крупный, мелкий - мельче - самый мелкий, крупнее, чем - мельче, чем. Применение. Учитель берет доску, показывает ее ребенку и предлагает: "Найди что-нибудь крупнее!"; "Найди что-нибудь мельче!" (Подготовительная среда!) 3.5.3. ЯЩИК С КУСОЧКАМИ ТКАНИ Материал: в ящике находится некоторое количество кусочков тканей, одинаковых попарно. Они отличаются по качеству ткани, по цвету или по рисунку. Повязка на глаза. Прямая цель: развитие осязания. Косвенная цель: развитие тонкой моторики. Возраст: около трех лет. Как работать с материалом. Учитель берет кусочки тканей из ящика и кладет их на стол, попарно упорядочивая. Он кладет перед ребенком две пары сильно отличных друг от друга тканей, берет поочередно кусочки в руку и ощупывает их большим и указательным пальцами. Предлагает ребенку поступить так же. Теперь он перемешивает кусочки, дает один из них в руки ребенку, ребенок должен его ощупать и выбрать такой же среди остальных кусочков. Постепенно одна за другой выводятся другие пары. Ткани также можно отличить визуально. ребенок должен быстро выполнить упражнение с закрытыми глазами. Это приводит к лучшей концентрации на осязании. Контроль над ошибками: через повторное сравнение кусочков тканей с помощью осязания и визуально. Дальнейшие упражнения: - ребенку предлагают сложить вместе пары тканей, похожих на ощупь; - ребенок упорядочивает ткани по типу их тканья. Устный урок: гладкая ткань - шершавая ткань, жесткая ткань - мягкая ткань, толстая ткань - тонкая ткань, грубой тканье - нежное тканье, рыхлое тканье - прочное тканье. Эти понятия сообщают на трехступенчатом уроке. Различение материалов, таких, как шелк, шерсть, хлопок и искусственное волокно. Применение:
    ребенок исследует свойства тканей, из которых сшита его одежда (гладкая - шершавая, толстая - тонкая и т. д.); ребенок проверяет, из какого материала сшита его одежда; ребенок пытается определить свойства других текстильных вещей в комнате.
3.6. МАТЕРИАЛЫ ДЛЯ РАЗЛИЧЕНИЯ ВЕСА 3.6.2. ТЯЖЕЛЫЕ ТАБЛИЧКИ Материал. В ящике с тремя полками находятся 3 серии табличек размером 6 см х 6 см. Каждая серия сделана из дерева одной породы, отличной от пород дерева остальных двух серий. Поэтому они имеют различный вес и различный цвет. Прямая цель: развитие чувства тяжести. Возраст: около трех лет. Как работать с материалом. Учитель выбирает из самой легкой и самой тяжелой серии некоторое ограниченное количество табличек и кладет их стопкой на стол. Теперь он показывает ребенку, как можно взвешивать таблички. Вытягивает руку немного вперед. Рукой нельзя касаться тела и стола. Кладет одну из табличек на ненапряженные концы пальцев, а рукой и кистью легко двигает вверх и вниз. Затем учитель делает это другой рукой. Таблички нужно очень осторожно класть на кончики пальцев, иначе ощущение тяжести теряется. Теперь ребенок берет в каждую руку по табличке. Он взвешивает их и сравнивает вес. Сначала это происходит с открытыми глазами. Собственно упражнение проводится с закрытыми глазами. Из-за различия пород дерева ребенок может отличить таблички также зрительно. Учитель спрашивает ребенка, заметил ли он различие. "Были ли таблички одинаково тяжелыми?"; "Была ли одна тяжелее?" Он предлагает ребенку все таблички одинаковой тяжести складывать вместе. Затем побуждает ребенка взвесить и упорядочить две следующие таблички. Так продолжается до тех пор, пока все таблички не будут рассортированы. Теперь ребенок может провести упражнение с двумя полными сериями. Контроль над ошибками: через повторное сравнение табличек при помощи взвешивания и визуально. Дальнейшие упражнения
    учитель показывает ребенку, как можно взвешивать по несколько табличек одновременно. Каждый раз ребенок сравнивает по равному количеству табличек из каждой серии. Различие веса сильнее и яснее ощутимо; ребенок упражняется с двумя сериями, которые имеют меньшее различие, например, с сериями 1-й и 2-ф; с сериями 2-й и 3-й; -освоить среднюю серию. Учитель берет из нее табличку и сравнивает с ней все другие таблички. Более легкие он кладет с одной стороны, более тяжелые - с другой, а равные по весу - посередине.
Устный урок . Тяжелый - легкий. Учитель берет одну из легких и одну из тяжелых табличек, взвешивает их на концах пальцев и говорит: "Из этих двух табличек эта легкая, а эта тяжелая". Он дает в руки ребенку таблички и предлагает их взвесить. Затем он говорит: "Какая табличка легкая?"; "Какая табличка тяжелая?" Можно повторить с двумя другими табличками второй серии. Учитель указывает на табличку и спрашивает: "Какая эта табличка? Какая та табличка?" Ребенок называет свойства тяжелый - легкий. Теперь ребенок сравнивает среднюю серию с какой-либо другой и узнает, сто понятия тяжелый - легкий лишь относительны. Тяжелый - тяжелее - самый тяжелый. Учитель кладет на руки ребенку тяжелую и легкую таблички и просит сказать, какая табличка тяжелая. Затем он заменяет легкую табличку на несколько более тяжелую и спрашивает ребенка: "Что теперь тяжелее?" Важно, чтобы упражнение проводилось с различным количеством табличек одной и той же серии. Он кладет на руку много тяжелых табличек одновременно и спрашивает: "Что теперь самое тяжелое?" Он делает это каждый раз с различными стопками тяжелых табличек, пока ребенок не будет уверенно ориентироваться в понятиях тяжелый - тяжелее - самый тяжелый. Легкий - легче - самый легкий. Учитель кладет ребенку на руки определенное количество - около 6 табличек тяжелой и легкой серии и предлагает через взвешивание определить, какие таблички легкие. Затем он убирает тяжелые таблички и кладет вместо них ребенку на руку около 3 легких табличек. Он спрашивает: "Что легче?" Затем кладет ребенку на руку одну-единственную легкую табличку и предлагает через взвешивание определить, что самое легкое. Повторяет подобные действия, пока ребенок не усвоит понятия легкий - легче - самый легкий. Применение: - ребенок приносит некоторое множество предметов и ставит их на стол. Выбирает один из них и сравнивает его вес с весом других предметов. Упорядочивает их в соответствии с понятиями легче - тяжелее - одинаковой тяжести. Эти упражнения можно провести с весами; - ребенок упорядочивает предметы, выстраивая их в ряд. Вес предметов в ряду убывает или возрастает; - дети взвешивают и определяют, что легче, тяжелее или равного веса. При этом ребенок отчетливо понимает относительность понятий легкий - тяжелый. Ребенок взвешивает на весах отдельные таблички и сравнивает их вес. При этом он кладет их на разные чаши весов; - ребенок взвешивает таблички с помощью гирь. Он сравнивает вес отдельных табличек. Если может, он записывает их вес; - ребенок кладет на весы одновременно несколько табличек; - ребенок пытается уравновесить определенное количество табличек одной серии табличками другой серии. 3.7. МАТЕРИАЛЫ ДЛЯ РАЗЛИЧЕНИЯ ШУМОВ И ЗВУКОВ 3.7.1. ШУМЯЩИЕ КОРОБКИ Материал. Он состоит из двух ящиков по 6 коробочек в каждом. Шумовая шкала коробочек охватывает шумы от тихого до громкого. С одной стороны эти коробочки имеют красную или голубую крышку. Они заполнены различными материалами и при сотрясении издают разные шумы. Каждая коробочка с красной крышкой идентична некоторой коробочке с голубой крышкой. Прямая цель: восприятие и дифференциация шумовых различий. Косвенная цель : тренировка моторики, развитие слуховой памяти, подготовка к восприятию музыки. Во время этой подготовки нужно обратить внимание на различные шумы в окружающем мире. Возраст: около трех лет. Как работать с материалом. Коробочки одной серии вынуты из ящика и поставлены на стол. Учитель берет коробочку, трясет ее вверх и вниз и внимательно прислушивается к шуму. Так ребенка обучают технике сотрясения. При повторении он закрывает глаза. Интерес ребенка будет привлечен к действию. Теперь учитель берет коробочки из другого ящика. Коробочки с красными крышками ставят с одной стороны стола, серию с голубыми крышками - с другой стороны. Так достигается более высокая концентрация. Он берет в руки по одной коробочке из каждой серии. Через поочередное сотрясение сравнивает их между собой. Выполнение задания. Если шумы обеих коробочек не совпадают, он ставит назад одну коробочку несколько в стороне от остальных. Упражнение повторяется с другими коробочками той же серии. Это продолжается до тех пор, пока не будет найдена коробочка с таким же шумом. Ставит пару выбранных так коробочек посредине между двумя сериями. Учитель продолжает, пока все коробочки не будут спарены. Учитель побуждает ребенка повторить упражнение, смешивает коробочки и затем предлагает ребенку работать, в то время как сам внимательно наблюдает за ним. Установление заключительной ситуации носит характер побуждения. С нетренированным ребенком упражнение ограничивают двумя, тремя или четырьмя парами. Контроль над ошибками: акустический или по маркировкам на нижней стороне коробочек. Дальнейшие упражнения: - отмечают одну коробочку. Ребенок выбирает из другой серии коробочку с таким же шумом; - ребенок ставит серии коробочек на двух разных столах, берет одну коробочку, трясет ее и ставит немного в стороне от серии. С помощью слуховой памяти он находит на другом столе подходящую коробочку и упорядочивает их. Эту игру можно также провести как игру партнеров друг с другом; - коробочки одной серии раздают шести детям. Учитель трясет какую-либо коробочку из другой серии. Ребенок, который держит коробочку с тем же шумом, приносит ее учителю; - все 12 коробочек раздаются. Каждый ребенок слушает шум своей коробочки. Он старается найти ребенка, у которого коробочка шумит так же; - учитель выбирает из какой-либо серии коробочку с самым тихим, самым громким и промежуточным шумом. Он ставит их друг рядом с другом на стол. Добиваясь отчетливого звучания и сравнивая шумы, демонстрирует градации громкости. Следующие упражнения являются упражнениями на составление рядов. Прежде всего он ищет самый громкий, затем самый тихий шум и определяет средний, сравнивая его с двумя первыми шумами. Постоянное сравнение важно для понимания задачи. Оно предотвращает чисто механическое упорядочивание. Учитель проверяет еще раз, мешает коробочки снова и предлагает ребенку повторить показанное упражнение. Если ребенок научился классифицировать 3 коробочки, то можно одну за другой ввести остальные. Каждую новую коробочку сравнивают со всеми уже расклассифицированными коробочками и упорядочивают относительно них. Число коробочек для классификации определяется в зависимости от способностей и интереса ребенка; - градация другой серии и сравнение ее с первой серией. Трехступенчатый урок. 1-я ступень. "Дай мне коробочку с тихим шумом!" 2-я ступень. "Дай мне коробочку с громким шумом!" Перед ответом ребенок проверяет шумы коробочек, снова сотрясая их. "Какой этот шум? Какой тот шум?" 3-я ступень. Учитель выбирает другую пару и говорит: "Дай мне из этих двух коробочку с громким шумом". Отсюда ребенок должен узнать относительность понятий громкий - тихий. Он ставит коробочки друг рядом с другом напротив всех остальных и повторяет упражнение. Громкий - громче - самый громкий. Тихий - тише - самый тихий. Учитель выбирает коробочки с тремя самыми громкими шумами. Самый тихий из них он сравнивает с каким-либо шумом, который явно тише (последний выбирается из трех оставшихся коробочек). Он трясет обе коробочки по очереди и говорит: "Этот громкий!" (1-я ступень). Он оставляет коробочку с более тихим шумом в сторону. Теперь он сравнивает первую коробочку с остальными двумя и говорит: "Этот громче. Этот самый громкий!" Вторая и третья ступени урока могут относиться только к возрастанию форм. Они исходят из основной формы, которая выражает понятие громкий в сравнении с предшествующей коробочкой с несколько отличной громкостью. Назвать другие шумы можно только через сравнение с первым шумом. Подобным же образом вводятся понятия: тихий - тише - самый тихий. Громче, чем - тише, чем. Учитель выбирает три коробочки. Он сравнивает средний шум с двумя другими шумами. Он говорит: "Этот громче, чем этот. Этот тише, чем этот". Контроль над ошибками:

Примечательно, что само слово «танграм» на самом деле является старинным английским словом, составленным из двух частей - «тань» - китаец и «грамма» - по-гречески «буква». В Китае же игра носит название Чи-Чао-Ту (7 хитроумных фигур).

Сущность этой головоломки заключается в складывании из 7 геометрических фигур танрама различных силуэтов, а также в придумывании новых. Представьте себе, подсчитано, что из элементов танграма можно составить 7000 различных комбинаций. При решении головоломки необходимо соблюдать всего 2 правила: первое - необходимо использовать все 7 фигур танграма, и второе - фигуры не должны перекрывать друг друга.

В чем польза танграма?

Складывание по танграм схемам способствует развитию усидчивости, внимания, воображения, логического мышления, помогает создавать целое из частей и предвидеть при этом результат своей деятельности, учит следовать правилам и действовать по инструкции. Все эти навыки необходимы ребенку во время учебы в школе, да и во взрослой жизни.

Танграм: схемы для младших школьников

Маленьким детям лучше предлагать простые и интересные схемы танграма, например силуэты животных. Предлагаем собрать вместе с детьми кошку, карпа, верблюда, лисицу, индюка и утку. Обратите внимание, что одну картинку можно совсем немного изменить, переместив несколько фигур, и собранное животное меняет положение, то есть словно оживает.

Кошечка



Карп и верблюд



Лисичка



Утка и индюк

Для вас подробное описание схемы танграма с изображением зайца.

1. Первую фигурку нашего зайца начнем составлять с головы - квадрата. К голове приложим ушки: треугольник среднего размера и параллелограмм. Туловище сделаем из 2 больших треугольников, а лапки из маленьких.

2. Наш зайчик чего-то испугался и поменял свою форму: прижал ушки, сложил лапки. Выложим из 2 больших треугольников туловище, соединив их в форме параллелограмма. К туловищу присоединим голову из квадрата, а к голове - уши из параллелограмма. Осталось сделать лапки из 2 маленьких и 1 среднего треугольника.

3. Заяц перестал бояться и решил выглянуть из-за куста: он навострил уши (параллелограмм и средний треугольник), а еще у него появился хвостик - маленький треугольник.



А так выглядит лисица, догоняющая зайца.


Схемы танграма для учеников средней школы

Пятиклассник уже смело может браться за более сложные схемы танграма - изображения людей в движении. Также детям этого возраста наверняка придутся по душе замысловатые силуэты цифр и букв.





Танграм хорошо развивает абстрактное мышление, поэтому будет полезен дошкольникам, которые готовятся к школе и .

Танграм в дизайне

Взрослые могут не только играть в танграм вместе с детьми , но и пойти дальше - использовать технику этой головоломки в дизайне. Вы можете оригинально и красиво украсить интерьер книжными полками в виде фигур танграма.



Воплощайте свои самые интересные идеи, все зависит только от вашей фантазии.