На практике люди не различают цвет как физическое явление и ощущение цвета. Чаще всего мы соединяем в одном выражении объективную причину и осо­бое качество вызванного этой причиной ощущения. Говорят: «желтый цвет», говорят, не отдавая себе отчета в том, что это словосочетание - гибрид. Свет - объективное явление. Его качества - это его спектр и его сила. Слово «желтый» обозначает качество ощущения. Белый дом, красный рефлекс - все это выражения-гибриды, хорошо передающие тесную связь объективного факта (причины) н его отражения нашим сознанием.

Качество ощущения связано со спектральным составом светового потока вовсе неоднозначно. «Желтой» может быть линия спектра (линия натрия 536 нм.). Такой же желтой может быть сумма «зеленого» и «красного» луча. И свет, содер­жащий полный спектр, может быть желтым (например, цвет солнечного диска). При известных условиях «ощущение» желтого цвета - «цветную тень» - может создать даже соседство зеленого и синего излучения. Я наблюдал двойную тень на снегу при двойном освещении ртутной лампой и луной. Свет ртутной лампы - белый, зеленоватый, луны - более теплый. Тень, освещенная только светом луны, была желтой (цвета желтой охры), светом лампы - синей (цвета пепельно-серого ультрамарина).

Попытки привести множество цветов в систему имеют дело не с физическими характеристиками светового потока, а с качествами ощущения.

Художника интересует прежде всего цветовая система как таковая, система, объединяющая качества видимого цвета, качества ощущения. Известны три основ­ных качества цвета: цветовой тон, светлота и насыщенность. Надо, чтобы худож­ники усвоили эту паучную терминологию и не путали тон с цветовым тоном, насыщенность с яркостью цвета, освещенность со светлотой.

Цветовым тоном называют качества цвета, обозначаемые такими словами, как желтое, красное, синее, оранжевое, зеленое, сине-зеленое, пурпурное и т. д. Понятно, что между оранжевым и желтым, оранжевым и красным можно найти промежуточные цвета, более близкие к одному или другому цвету. Можно соста­вить непрерывный замкнутый ряд изменений по цветовому тону от фиолетового через синие, зеленые, желтые, красные, пурпурные до исходного фиолетового. Все цвета, обладающие цветовым тоном, называются хроматическими в отличие от ахроматических (нейтральных) цветов - белого, серого и черного.

Нельзя указать однозначной физической основы для данного цветового тона. Между свойствами светового раздражителя и качеством ощущения связь осуще­ствляет цветовое зрение, суммирующее раздражители по своим законам.

Светлотой называют качество цвета, присущее одинаково и хроматическим и ахроматическим цветам. Ахроматические цвета различаются только по светлоте, образуя непрерывный ряд от «абсолютно» черного до слепящего белого 4 .



Физической основой светлоты цвета служит яркость прямого или отраженного излучения. Светлоту не следует путать с белизной. Из предметных цветов самый светлый - белый, но распределение освещенности может сделать предметный белый более темным, чем серый (серое на солнце и белое в тени). Желтое пятно лампы светлее белого снега под ней. Сильное увеличение светлоты уменьшает число различий по цветовому тону. Так же, как все очень темные цвета сливаются в конце концов в один черный, так и очень светлые - на границе слепящего света - в один белый.

Насыщенностью называют большую или меньшую выраженность в цвете его цветового тона. Ахроматические цвета можно назвать цветами нулевой насыщен­ности. К максимально насыщенным цветам относятся, в частности, спектральные цвета. Однако нельзя указать однозначной физической основы насыщенности цвета. И здесь вмешиваются законы цветового зрения.

Колориста всегда увлекала задача создания на картине светло-насыщенных и темно-насыщенных цветов, особенно сочетание светлоты и насыщенности 5 .

Первая попытка привести видимые цвета в систему принадлежала Исааку Ньютону. Цветовая система Ньютона - цветовой круг, составленный из семи секторов: красного, оранжевого, желтого, зеленого, голубого, синего и фиоле­тового 6 .

Нельзя не удивляться тому, как пришел Ньютон к идее цветового круга, объединяющей цвета в систему по признакам, присущим ощущению цвета, как создал он систему, воспринятую позднее с небольшими изменениями даже его крайним противником Гёте, систему, нужную художнику и удержавшуюся в основ­ном до наших дней.

Заметив, экспериментируя со стеклами, разложение солнечного луча призмой - факт непрерывного изменения цвета в спектре,- Ньютон формулировал удиви­тельную мысль о сложном составе простого солнечного луча. Если белый луч, проходя через призму, растягивается в ленту разных цветов от красного до фиолетового, все больше и больше отклоняясь от прямого пути, то белый луч - это сумма разноцветных излучений. Разные цветные лучи, обладая разным коэффициентом преломления, отклоняются от прямого пути на разную величину - меньше всего красные, больше всего фиолетовые.

Доказательства самого Ньютона не были безупречными, и Гёте придирчиво писал об этом. Для подтверждения разной преломляемости разных но цвету лучей Ньютон пользовался выкрасками. Мы знаем теперь, что свет, отраженный от выкраски, нельзя отождествлять со спектральным цветом. Цвет выкраски - сам сложен. Однако гениальная догадка оказалась верной. Казалось бы, Ньютон, как физик, интересующийся больше объективными величинами, чем ощущениями, должен был в качестве модели, объединяющей цвета, выбрать отрезок прямой, каждой точке которого отвечает свой коэффициент преломления. Так и поступают ученые, оставаясь на почве спектрального анализа.

Гениальность Ньютона, однако, сказалась и в том, что он не забыл другой стороны вопроса. Его удивление факту простоты цвета солнечного луча столь же удивительно, как и удивление фактур падения яблока.

Белый луч - это сумма излучений, значит, наше зрение суммирует цвета, порождая по определенным законам одни цвета из других. Физик стал на точку зрения физиолога 7 . И Ньютон испытал оптические суммы разных цветов. Вот что он получил. Смешение двух близких по спектру цветов дает цвет промежуточный между ними. Смешение красного и зеленого, оранжевого и синего, желтого и фиолетового дает цвет, близкий к белому.

Приемы смешения, которыми пользовался Ньютон, также не были безупреч­ными. Но все законы оптического смешения были фактически предсказаны им. Он заметил и тот факт, что смешение фиолетового и красного цвета дает пурпур­ные цвета, которых нет в спектре. Таким образом, множество цветов оказалось не только непрерывным, но и замкнутым. Увидел Ньютон и то, что смешение не близких по спектру цветов всегда ведет к потере насыщенности, к подмеси белого (серого). Идея цветового круга была столько же естественным, сколько и удивительным следствием экспериментов гениального физика по смешению цве­тов, так же как идея самого смешения - естественным и удивительным следствием наблюдений над разложением солнечного луча.

Хотя художники должны на практике хорошо знать и цветовой круг и законы оптического суммирования, мы считаем полезным напомнить здесь эту азбуку цветоведения 8 .

По окружности цветового круга расположены непрерывно изменяющиеся но цветовому тону насыщенные цвета - спектральные и пурпурные. Против пурпурно-красного расположен зеленый цвет, против красного - сине-зеленый, против оранжевого - синий и против желтого - фиолетовый. На каждом радиусе расположены цвета одного цветового тона, непрерывно изменяющиеся по насыщен­ности от спектрального или пурпурного до белого, расположенного в центре круга. Изменение цвета по светлоте в цветовом круге не учитывается.

На цветовом круге легко наглядно показать три закона оптического смешения цветов. Согласно идее Ньютона, цвет смеси находится (по принципу центра тяжести) на прямой, соединяющей смешиваемые цвета, ближе к тому цвету, кото­рого в смеси «больше».

Соединим хордой два близких спектральных цвета, например оранжевый и крас­ный. Их оптическая сумма расположена на хорде и будет, очевидно, обладать цветовым тоном цвета, промежуточного между смешиваемыми цветами. Эго правило оптического смешения, полученное Ньютоном. Легко заметить, что любое смешение цветов ведет к потере насыщенности. Чем дальше друг от друга смеши­ваемые спектральные цвета, тем больше потеря насыщенности в цвете смеси.

Наконец, наиболее удаленные друг от друга цвета, цвета диаметрально противоположные на цветовом круге, например желтый и фиолетовый, дают при смешении в «равных количествах» белый цвет. Такие цвета называют дополнительными. Итак, дополнительные цвета, смешанные в «равных количествах», взаимно нейтрализуются. Это второе правило оптического смешения. Наконец, сумму двух цветов можно смешать с третьим цветом. Эффект смешения как легко убедиться на цветовом, круге, не будет зависеть от того, как составлен каждый из смешиваемых цветов. При смешении каждый цвет как бы он ни был сложен, рассматривается как простой цвет - точка цветового круга. Это третье правило оптического смешения 9 .

Очевидно, можно выбрать три спектральных цвета, смешение которых в разных количествах может дать все или почти все цвета цветового круга. Такой цветовой триадой принято теперь считать триаду - красный, зеленый, синий. Красный, зеленый и синий называют основными цветами ньютоновской цветовой системы.

Последующие исследования лишь уточняли эту систему.

Новейшие экспериментальные данные о дополнительных цветах фиксируют следующие пары: синий (сходный с ультрамарином темным) и желтый (сходный с желтым кадмием); фиолетовый (сходный с фиолетовым кобальтом лилового оттенка) и зеленовато-желтый; пурпурный

(сходный с фиолетовым краплаком) и зеленый (сходный с травяной зеленью); голубой (сходный с берлинской лазурью) и оран­жевый; красный (сходный с красным кадмием) и

голубовато-зеленый 10 .

Следует особенно подчеркнуть, что красный, типа киновари или красного кадмия, не является дополнительным к зеленому, даже зеленому цвета изумрудной зелени. Матисс в своем натюрморте с золотыми рыбками противопоставляет зеленую листву фиолетово-розовому, а красные пятна рыбок - голубовато-зеленой воде. И это понятно. Он хочет повысить цветность сопоставлениями дополнительных цветов. Мы увидим дальше, что дополнительные цвета связаны с цветовыми конт­растами, которыми художники пользуются постоянно.

Новейшие экспериментальные исследования заставили несколько изменить геометрический образ множества цветов. В частности, идея сложения цветов нашла выражение в более точной модели - так называемом треугольнике смешения цве­тов. В вершинах треугольника смешения помещаются основные цвета ньютонов­ской цветовой системы - красный, зеленый, синий. Цвет суммы двух цветов нахо­дится по принципу центра тяжести на прямой, соединяющей соответствующие смешиваемым цветам точки треугольника смешения 11 .

С триадой Ньютона связаны все последующие попытки построить господ­ствующую и в наши дни, хотя все еще не доказанную, трехкомпонентную теорию цветового зрения.

Цветовая система Ньютона, нашедшая свое выражение в цветовом круге и в законах смешения цветов, не есть ли это наиболее общая формальная основа колорита - цветовой системы картины?

Недаром художники-колористы, с большей или меньшей долей теоретизиро­вания, говорили о цветовом круге и его использовании в живописи, недаром они изучали законы смешения цветов, пытаясь определить на их основе простейшие цветовые гармонии.

Рационалистическому строю творчества неоимпрессионистов идея научной систематики цветов оказалась особенно близкой. Синьяк, Сера с восторгом читали книгу Шеврёля, популярно излагавшую законы оптического суммирования и законы контраста, выраженные в цветовом

Сейчас яснее сильные и слабые стороны этих попыток.

Ньютон изучал эффекты от совместного действия разных цветов на один и тот же участок сетчатки глаза. Такое смешение цветов называется оптическим смешением. Пользуемся ли мы зеркальным смесителем, вертушкой или смешением посредством двух спектроскопов, мы получаем оптические смеси.

Оптические смеси получаются и в том случае, если разные цвета расположены достаточно мелкими пятнами рядом друг с другом (пространственное смешение). Живопись часто пользовалась пространственным смешением цветов. Законы про­странственного смешения знали на практике не только импрессионисты, но и вене­цианцы Высокого Возрождения, и Веласкес, и мастера помпейских росписей, и мастера фаюмских портретов (смотрите, например, «Портрет пожилого мужчины» из коллекции Государственного музея изобразительных искусств им. А. С. Пушкина). Цветные штрихи по основному пятну цвета на фресках Феофана Грека и его учеников свидетельствуют о практическом знании эффектов пространственного смешения, оживлявших цвет.

Но здесь нужна существенная оговорка. Речь идет именно о практическом знании эффектов оптического смешения цветов. Эффект оптического смешения зависит не только от качества смешиваемых цветов, но и от их количества. А приемы, которыми пользовались художники, соединяют эффекты оптического смешения с эффектами от способа нанесения красочного слоя.

Так, в «Руанском соборе в полдень» К. Мопе цветовой тон освещенной стены собора создан не полностью закрытыми зеленовато-рыжими рыхлыми западениями краски, розоватыми и желтоватыми мазками более плотного верхнего слоя, по кото­рому положены местами белильные мазки, получившие синеватый оттенок. Зеленовато-рыжее, розовое, синее - это слегка сдвинутая триада Ньютона. Из нее можно получить все оттенки цвета. Весь вопрос в количестве цветов, участвующих в смеси. Там, где синеватые белильные мазки верхнего слоя чаще, мы видим холодный (лиловатый) оттенок, там, где яснее розовая прокладка, - оранжевато-розовый, там, где активно участвует рыжий цвет, яснее выражена желтизна. Но даже на далеком расстоянии общность цветового тона стены не переходит в безразличное равенство, общий цвет оживлен переходами.

Теневые части стены «Руанского собора вечером» составлены из цветов, очень близких к цветам, использованным в дневном этюде. Чуть-чуть более темные рыжие западения, затем синеватый тоже рыхлый слой и поверх него белильные мазки розоватого оттенка. Одна и та же палитра, но другие количества цветов и другая последовательность их наложения. Художник пользовался одной и той же триадой цветов, близкой к основной ньютоновской триаде, и сохранил ясную цветность, сохранил, впрочем, на грани обесцвечивания. По сравнению, например, с любым холстом Матисса перед нами, конечно, монолитный поток сдержанных, разбеленных цветовых переходов.

Живопись пользовалась, пользуется и будет пользоваться оптическим смеше­нием цветов. Но едва ли можно одно из средств цветового построения представ­лять как единственную и обязательную его основу.

Теоретики неоимпрессионизма пытались представить законы оптического смеше­ния цветов как истинную основу цветовой системы картины. Ссылаясь на Шеврёля и Гельмгольца, они настаивали на преимуществах оптического смешения цветов по сравнению с физическим смешением красок.

Поль Синьяк в программной книге неоимпрессионизма писал: «Всякая мате­риальная смесь ведет не только к затемнению, но и к обесцвечиванию, всякая оптическая смесь, наоборот, ведет к ясности и блеску» 13 .

Синьяк требует «заменить всякую вещественную смесь противоположных красок их оптической смесью».

Но утверждение Синьяка совершенно бездоказательно.

Если пространственное смешение соседних пятен является полным (то есть цвета, вызывающие общий эффект, уже не различаются зрителем), оно не может иметь никаких преимуществ перед хорошо подобранной вещественной смесью-

Больше того, оптическое смешение любых цветов, как показывает цветовой круг, также ведет к известному обесцвечиванию (потере насыщенности), а сме­шение цветов, близких к дополнительным,- даже к сильному обесцвечиванию.

Действительная красота и цель импрессионистической кладки заключается в том оживлении общего цвета, которое вызывается неполным оптическим смеше­нием цветов. Тот же Синьяк подчеркивал, что для импрессионистической кладки чрезвычайно важно, чтобы был угадан - в соответствии с размером картины - размер мазка. Но почему же это важно? Ведь оптическое смешение будет тем лучше, чем мельче мазки? Наилучшее оптическое смешение достигается полным наложением световых потоков.

Поясним на примере. Если подвести зрителя вплотную к картине Сурикова «Боярыня Морозова», он не увидит в живописи снега пичего, кроме разноцветных мазков (полная раздельность цветов). Если отвести зрителя от картины, он увидит только голубоватый снег и ему будет совершенно безразлично, написан ли этот снег раздельными цветами или покрашен одной голубоватой краской (полное смешение). Ни то, ни другое положение относительно картины, однако, не является наилучшим и естественным. Легко убедиться, что. на том расстоянии, с которого лучше всего охватывается и богаче всего раскрывается для зрителя этот холст, смешение цветов в живописи снега остается неполным. Мы не видим раздельных мазков, но мы видим переливы цвета, игру теплых и холодных оттенков, игру рефлексов на снегу, его взрытую, мерцающую отражениями рыхлую структуру *. Импрессионисты для достижения «блеска» колорита также использовали неполное оптическое смешение цветов. Вспомним, что и Делакруа прибегал к неполному физи­ческому смешению красок на палитре, добиваясь аналогичного оживления цвета.

Именно неполное оптическое смешение цветов хорошо подходит для выра­жения импрессионистического видения, выбирающего в цветовых гармониях природы как главное непрерывную игру излучений. Но оживление цвета приемами пространственного смешения вовсе не предполагало импрессионистического виде­ния и применялось в разных живописных школах.

Очень хорошо писал о раздельности мазка и слитности красок Делакруа: «В конечном счете в произведении подлинного мастера все зависит от расстояния, с которого будешь смотреть на картину. На известном расстоянии мазок раство­рится в общем впечатлении, но он придаст живописи тот акцент, которого ей не может дать слитность красок» 14 .

Если художника, пытавшегося осмыслить цветовую систему картины, направ­ляла и поправляла его практика и он ошибался не столько в самой практике, сколько в том, что

* Для полноценного восприятия такой картины важно и разглядывать вблизи детали живописи и охватывать ее в целом, издали. Тогда еще яснее становится тайна рождения осмысленной цветности из пестроты красок.

преувеличивал ее значение, то некоторых теоретиков цветоведения увлечение научными открытиями привело к ложным обобщениям. Они не увидели разницы между законами оптического суммирования световых лучей, на основе которых построена цветовая система Ньютона, и законами, лежащими в основе цветового построения картины.

Думали, что колорит картины непременно основан или на паре дополнительных цветов, или на «гармонической» цветовой триаде (например, триаде - красное, зеленое, синее) 15 .

Но что же сказать в таком случае о противопоставлении красного и синего (без участия зеленого), столь характерном для картин многих великих колористов, желтого и черного, синего и белого? Трагический аккорд красных и синих в «Снятии с креста» Пуссена великолепен так же, как и аккорд желтых и синих в работах Вермеера, желтого и голубого - в «Кружевнице» (Париж, Лувр), лимонно-желтого и синего - в «Служанке с кувшином молока» (Амстердам, Рейкс-музей). Были и еще более абстрактные попытки вывести цветовые гармонии из числовых соотношений между синусами преломления (Ньютон, см. прим. 6) или между часто­тами колебаний отдельных монохроматических излучений, подобно тому как музы­кальные гармонии выводятся из простых числовых отношений между отрезками музыкальной хорды или частотами колебаний музыкальных тонов.

Нет нужды критиковать эти поздние отголоски пифагорейства. Наконец, посредством цветового круга пытались установить важное понятие цветовой гаммы. Изучая излюбленные цвета некоторых художников, определяли гамму художника (гамму Коро, гамму Рембрандта) как ограниченную область цветового круга, ось которого, проходя через точку белого, опирается на дополнительные цвета, один из которых доминирует как по размеру пятен, так и по насыщенности (цветовая доминанта) 16 . Мы еще вернемся к вопросу о цветовой гамме. Ее структура много сложнее той упрощенной схемы, которую можно получить из простого сопостав­ления красок картины с ньютоновской системой цветоощущения, выраженной в цветовом круге. Ньютоновская цветовая система описывает только одну сторону фактов - цветовое множество и не затрагивает цветового взаимодействия, она основана на законах оптического смешения, а художник имеет дело чаще всего не с оптическим смешением цветов. И вообще, бессмысленно искать цветовые гармонии абстрактным путем, если мы располагаем в качестве бесспорного материала множеством совершенных образцов, созданных великими колори­стами.

Однако оговоримся еще раз - бесплодность претензий па абстрактные законы красоты не означает бесполезность для искусствознания и художественной прак­тики цветоведения и физиологии цветового зрения.

Цветовой круг содержит все изменения цвета по цветовому гону и насы­щенности. Но цвета различаются, кроме того, по яркости (светлоте). В сов­ременном понимании полная система ньютоновских цветов, изменяющихся по трем параметрам - цветовому тону, насыщенности и светлоте, - это цвето­вое тело.

Множество точек цветового тела содержит все существующие цвета. Его структура отвечает законам смешения цветов (сечения тела плоскостями, перпен­дикулярными черно-белой оси, дают треугольники смешения) и трехкомпонентной теории цветового зрения. На основе цветового тела, зная параметры исходных цветов, можно рассчитать цвет их смеси. Вот почему цветоведение в его матема­тическом выражении называют исчислением цветов. Практическая важность такого исчисления для светотехники и колориметрии очевидна.

Здесь нет надобности говорить о цветовом теле и правилах исчисления цве­тов. Цветоведа и светотехника интересует изолированный цвет - точка цветового тела. Художник никогда не имеет дела с изолированным цветом.

Но художнику полезно иметь представление о некоторых специальных вопро­сах научной систематики цветов.

Яркость (светлота) и цветовой тон не являются вполне независимыми пара­метрами. Значительное уменьшение яркости излучения меняет цветовой тон. Примерная картина цветового сдвига при уменьшении яркости такова: зеленые синеют, синие приближаются к фиолетовым, желтые приближаются к оранжевым, оранжевые - к красным. Дальнейшее уменьшение яркости ведет к эффекту обес­цвечивания 17 .

Понятно, что то же самое должно происходить и с цветами картины при зна­чительном уменьшении ее освещенности. Вот почему сравнивать колористические качества картин можно только в условиях равной освещенности.

Большое увеличение яркости излучения вызывает другой эффект. Красные цвета переходят в оранжевые, затем - желтые, наконец - белые. Фиолетовые переходят в синие, затем - голубые. Очень сильный свет приводит к эффекту обесцвечивания.

Цветовой тон зависит также и от насыщенности, что доказывают факты изменения цветового тона при разбелке. При разбелке часть желтых розовеет, часть зеленеет, красное становится более пурпурным, зеленое синеет, синее при­ближается к фиолетовому 18 .

Изменение цветового тона при изменении яркости и разбелке, изучавшееся в психологии цветоощущения, относится к фактам оптического смешения цветов. Раздельная импрессионистическая кладка желтых пятен рядом с белыми вызывает впечатление оранжевого и даже розового. Кладка зеленых пятен рядом с белыми вызывает впечатление голубого.

Чтобы понять из чего состоит цвет , необходимо сначала узнать о двух цветовых системах, с которыми вы столкнетесь, профессионально занимаясь фотошопом: аддитивной и субтрактивной.

Аддитивная цветовая система применяется в любом изображении, которое появляется на экране, она объясняет, как потоки света соединяются для получения цвета. Печатные изображения, напротив, создаются путем смешивания красок согласно субтрактивной цветовой системе .

Изображения, которые вы видите на мониторе компьютера (или телевизора) состоят из света. И хотя ваши глаза чувствительны к сотням волн разной длины (каждая из которых соотносится с определенным цветом), для воспроизведения всех цветов, что вы видите на экране, достаточно всего трех - красного, зеленого и синего (RGB) . Чистый холст экрана это тьма (другими словами, отсутствие света) и чтобы создать цвет, монитор добавляет отдельные пикселы цветного света. Вот почему экранная система цветов называется аддитивной . Каждый крошечный пиксел может быть только красным, зеленым или синим, или, чаще всего, некоторой комбинацией всех трех цветов. Все устройства захвата изображения - такие, как цифровые фотоаппараты, видеокамеры, сканеры - используют аддитивную систему цвета, как и все устройства отображения цифровых изображений.

В аддитивной цветовой системе области пересечения красного, зеленого и синего света выглядят белыми (см. рис.). Утверждение кажется вам глупым или же заставляет вспомнить школьный курс физики? Подумайте об этом так: если бы вы направили красный, зеленый и синий прожектора на сцену, то увидели бы белый свет там, где пересекутся лучи всех трех ламп. Любопытно, что в местах пересечения только двух из трех лучей света вы бы также увидели голубой, пурпурный или желтый цвета. Области, на которые не попадает свет, кажутся черными. Вот как компьютерные мониторы и телевизоры создают цвета на экране.

Вы можете самостоятельно провести подобный эксперимент со светом, создав красный, зеленый и синий круги на отдельных слоях на черном фоне. Сделайте круги пересекающимися, переключите режим наложения каждого слоя на - и там, где круги пересекаются, появятся другие цвета.

Теперь пришло время поговорить о печатном цвете , который работает совершенно по-другому.

Печатные машины используют так называемую субтрактивную систему цвета. В этой системе цвета возникают в результате сочетания отраженного света (который вы видите) и поглощенного (которые вы не видите).

На распечатанной фотографии в журнале данная система работает как своего рода совместное предприятие используемых печатных красок (голубой, пурпурной, желтой и черной, все из которых поглощают цвет) и бумаги, на которую эти краски нанесены (отражающей поверхности). Печатные краски служат фильтром, поглощая часть света, попадающего на бумагу. Бумага, в свою очередь, отражает свет обратно; чем белее бумага, тем точнее будут смотреться цвета, когда их распечатают.

В субтрактивной системе краски разных цветов поглощают различные цвета светового спектра. Например, голубые краски поглощают красный свет и отражают зеленый и синий так, что вы видите сочетание зеленого и синего, другими словами, голубой. Аналогичным образом пурпурные краски поглощают зеленый свет и отражают красный и синий, иными словами, пурпурный. И последний пример: сочетание голубого, пурпурного и желтого красок поглощает большую часть основных цветов (красного, зеленого и синего) и отображает то, что осталось за кадром - темно-коричневый.

Примечание

Для получения истинного черного, градаций серого и оттенков цвета (смешанных с черным для создания более темных вариантов), сотрудники типографии решили добавить черный в качестве четвертого цвета красок для печати. Они не могли сокращенно обозначить его буквой В (black) во избежание путаницы с синим (как в RGB), поэтому вместо буквы В использовали К (blacK ). Вот как возникла аббревиатура CMYK .

Подводя итог: субтрактивный цвет создается при помощи света, падающего на объект и отражающегося вам в глаза, в то время как аддитивные цвета создаются с помощью разноцветных потоков света, пересекающихся между собой прежде, чем вы их увидите.

Заметили ошибку в тексте - выделите ее и нажмите Ctrl + Enter . Спасибо!

Для измерения и представления информации о цвете в первую очередь необходимо иметь представление о его фундаментальных физических и психологических свойствах. Цвет является результатом взаимодействия света, объекта и наблюдателя (или регистрирующего прибора). При взаимодействии с объектом свет модифицируется таким образом, что регистрирующий прибор (например, как система зрения человека) воспринимает модифицированный свет как определенный цвет. Чтобы цвет как таковой существовал, необходимо присутствие всех трех этих элементов. Фактически цвет – это феномен, вызываемый восприятием аппаратом зрения человека света.

Основой математического описания цвета в колориметрии является экспериментально установленный факт, что любой цвет при соблюдении определенных условий можно представить в виде смеси (суммы) определённых количеств трёх линейно независимых цветов, т. е. таких цветов, каждый из которых не может быть представлен в виде суммы каких-либо количеств двух других цветов. Групп (систем) линейно независимых цветов существует бесконечно много, но в колориметрии используются лишь некоторые из них. Три выбранных линейно независимых цвета называются первичными (primary colors ). Эти цвета определяют цветовую координатную систему (ЦКС ) или цветовую схему (color scheme ) – набор первичных цветов, используемых для получения всех остальных. Тогда три числа, описывающие данный цвет, являются количествами основных цветов в смеси, цвет которой зрительно неотличим от данного цвета – цветовая координата данного цвета.

Будучи отнесены к стандартному наблюдателю в определённых неизменных условиях, стандартные данные смешения цветов и построенные на них колориметрической ЦКС описывают фактически лишь физический аспект цвета, не учитывая изменения цветовосприятия глаза при изменении условий наблюдения и по другим причинам.

Представление цвета с помощью цветовой координатной системы должно отражать свойства цветового зрения человека. Поэтому предполагается, что в основе всех цветовых схем лежит так называемая физиологическая ЦКС . Эта система определяется тремя функциями спектральной чувствительности трех различных видов приёмников света (так называемых колбочек), которые имеются в сетчатке глаза человека и, согласно наиболее употребительной трёхцветной теории цветового зрения, ответственны за человеческое цветовосприятие. Реакции этих трех приёмников на излучение считаются цветовыми координатами в физиологической ЦКС, но функции спектральной чувствительности глаза не удаётся установить прямыми измерениями. Их определяют косвенным путём и не используют непосредственно в качестве основы построения колориметрических систем.

Свойства цветового зрения учитываются в колориметрии по результатам экспериментов со смешением цветов. В таких экспериментах выполняется зрительное уравнивание чистых спектральных цветов (т. е. цветов, соответствующих монохроматическому свету с различными длинами волн) со смесями трех основных цветов. При графическом построении зависимостей количеств основных цветов от длины волны получаются функции длины волны, называемые кривыми сложения цветов или просто кривыми сложения.

Цветовые схемы можно разделить на две группы: схемы представления цвета от излучаемого и отраженного света. Мы видим объекты потому, что они либо излучают свет, либо светят отраженным светом. В первом случае предметы приобретают цвет испускаемого ими излучения, а во втором их цвет определяется цветом падающего на них света и цветом, который они отражают. Примером излучающего объекта является экран монитора, а отражающего – бумага, нанесенная на нее краска.

Система RGB

Фактически основой всех цветовых схем является система, кривые сложения которой были определены экспериментально. Её основными цветами являются чистые спектральные цвета, соответствующие монохроматическим излучениям с длинами волн 700,0 нм (красный), 546,1 нм (зелёный) и 435,8 нм (синий). Эта система, принятая Международной комиссией по освещению (МКО) в 1931, получила название международной колориметрической системы МКО RGB или просто RGB (от англ. red – красный, green – зелёный, blue – синий).

Система RGB является аддитивной (от англ. add – добавлять, складывать). В таких системах цвет получается путем сложения первичных цветов. При этом отсутствие всех цветов представляет собой черный цвет, а присутствие всех цветов – белый. Система аддитивных цветов работает с излучаемым светом, например, от монитора компьютера.

Система CMYK

Окрашенные несветящиеся объекты поглощают часть спектра белого света, освещающего их, и отражают оставшееся излучение. В зависимости от того, в какой области спектра происходит поглощение, объекты отражают разные цвета (окрашены в них). Цвета, которые используют белый свет, вычитая из него определенные участки спектра, называются субтрактивными ("вычитательными"). Для их описания используется субтрактивная модель CMY (Cyan, Magenta, Yellow). В этой модели основные цвета образуются путем вычитания из белого цвета основных аддитивных цветов модели RGB. Понятно, что в таком случае и основных субтрактивных цветов будет также три: голубой (белый минус красный), пурпурный (белый минус зеленый), желтый (белый минус синий).

Система цветов CMY была широко известна задолго до того, как компьютеры стали использоваться для создания графических изображений. Её основные цвета: голубой, пурпурный и желтый является, по сути, наследниками трех основных цветов живописи (синего, красного и желтого). Изменение оттенка первых двух связано с отличием химического состава художественных красок от печатных. Как художественные, так и печатные краски не могут дать очень многих оттенков. Для улучшения качества отпечатка в число основных полиграфических красок (и в модель) внесена черная. Именно она добавила последнюю букву в название модели CMYK (черный компонент сокращается до буквы К, поскольку эта краска является ключевой (Key) в процессе цветной печати). CMYK – основная модель полиграфии и используется при выводе графической информации на печать.

Система HSB

Системы цветов RGB и CMYK базируются на ограничениях, накладываемых аппаратным обеспечением (в случае RGB это мониторы, сканеры и т.п. , в случае CMYK это типографские краски). Более интуитивным способом описания цвета является представление его в виде тона или оттенка (Hue), насыщенности (Saturation) и яркости (Brightness) – система HSB. Её вариациями являются система HSL, где используются тон (Hue), насыщенность (Saturation) и освещенность (Lightness) и система HSI – тон (Hue), насыщенность (Saturation) и интенсивность (Intensity).

Тон представляет собой конкретный оттенок цвета, отличный от других: красный, зеленый, голубой и т. п. Насыщенность цвета характеризует его относительную интенсивность (или чистоту). Уменьшая насыщенность, например, красного, мы делаем его более пастельным, приближаем к серому. Яркость (освещенность или интенсивность) цвета показывает величину черного оттенка, добавленного к цвету, что делает его более темным.

Система HSB имеет перед другими системами важное преимущество: она больше соответствует природе цвета, хорошо согласуется с моделью восприятия цвета человеком. Многие оттенки можно быстро и удобно получить в HSB, конвертировав затем в RGB или CMYK, доработав в последнем случае, если цвет был искажен. Поэтому система HSB часто используется при выборе пользователем цвета.

Аддитивный цвет получается при соединении света разных цветов. В этой схеме отсутствие всех цветов представляет собой чёрный цвет, а присутствие всех цветов - белый. Схема аддитивных цветов работает с излучаемым светом, например, монитор компьютера. В схеме субтрактивных цветов происходит обратный процесс. Здесь получается какой-либо цвет при вычитании других цветов из общего луча света. В этой схеме белый цвет появляется в результате отсутствия всех цветов, тогда как их присутствие даёт чёрный цвет. Схема субтрактивных цветов работает с отражённым светом.

Система цветов RGB

Монитор компьютера создает цвет непосредственно излучением света и, использует схему цветов RGB. Если с близкого расстояния посмотреть на экран монитора, то можно заметить, что он состоит из мельчайших точек красного, зелёного и синего цветов. Компьютер может управлять количеством света, излучаемого через любую окрашенную точку и, комбинируя различные сочетания любых цветов, может создать любой цвет. Будучи определена природой компьютерных мониторов, схема RGB является самой популярной и распространённой, но у неё есть недостаток: компьютерные рисунки не всегда должны присутствовать только на мониторе, иногда их приходится распечатывать, тогда необходимо использовать другую систему цветов - CMYK.

Система цветов CMYK

Данная система была широко известна задолго до того, как компьютеры стали использоваться для создания графических изображений. Для разделения цветов изображения на цвета CMYK применяют компьютеры, а для полиграфии разработаны их специальные модели. Преобразование цветов из системы RGB в систему CMYK сталкивается с рядом проблем. Основная сложность заключается в том, что в разных системах цвета могут меняться. У этих систем различна сама природа получения цветов и то, что мы видим на экране мониторов никогда нельзя точно повторить при печати. В настоящее время существуют программы, которые позволяет работать непосредственно в цветах CMYK. Программы векторной графики уже надёжно обладают этой способностью, а программы растровой графики лишь в последнее время стали предоставлять пользователям средства работы с цветами CMYK и точного управления тем, как рисунок будет выглядеть при печати.

Системы цветов HSB и HSL

Системы цветов HSB и HSL базируется на ограничениях, накладываемых аппаратным обеспечением. В системе HSB описание цвета представляется в виде тона, насыщенности и яркости. В другой системе HSL задаётся тон, насыщенность и освещённость. Тон представляет собой конкретный оттенок цвета. Насыщенность цвета характеризует его относительную интенсивность или частоту. Яркость или освещённость показывают величину чёрного оттенка добавленного к цвету, что делает его более тёмным. Система HSB хорошо согласовывается с моделью восприятия цвета человеком, то есть он является эквивалентом длины волны света. Насыщенность - интенсивность волны, а яркость - общее количество света. Недостатком этой системы является то, что для работы на мониторах компьютера её необходимо преобразовать в систему RGB, а для четырехцветной печати в систему CMYK.

Индексированный цвет, работа с палитрой

Все описанные ранее системы цветов имели дело со всем спектром цветов. Индексированные палитры цветов - это наборы цветов, из которых можно выбрать необходимый цвет. Преимуществом ограниченных палитр является то, они что занимают гораздо меньше памяти, чем полные системы RGB и CMYK. Компьютер создаёт палитру цветов и присваивает каждому цвету номер от 1 до 256. Затем при сохранении цвета отдельного пиксела или объекта компьютер просто запоминает номер, который имел этот цвет в палитре. Для запоминания числа от 1 до 256 компьютеру необходимо всего 8 бит. Для сравнения полный цвет в системе RGB занимает 24 бита, а в системе CMYK - 32.

ВВЕДЕНИЕ В ЦВЕТОВЕДЕНИЕ И ЦВЕТОВЫЕ СИСТЕМЫ 1.

Введение в цветвоведение

Цветоведение - это комплексная наука о цвете, включающая систематизированную совокупность данных физики, физиологии и психологии, изучающих природный феномен цвета, а также совокупность данных философии, эстетики, истории искусства, филологии, этнографии, литературы, изучающих цвет как явление культуры.

Колористика - это раздел науки о цвете, изучающий теорию применения цвета на практике в различных областях человеческой деятельности.

Цветовые системы. История науки о цвете.

Принято выделять два этапа в истории классификации цвета: до XVII века и XVII век - наши дни.

Мифологический этап. Выделялись 3 цвета: Красный, Белый, черный.

Древний Восток. Китай. Основным космообразующим числом было 5 (четыре стороны света и центр земли). Особенности колорита китайской культуры древности: сочетание искусственности и натуральности, красочность и многоцветие (которое, к сожалению, в последствии трансформировалось в аскетизм по отношению к цвету, в монохромие и ахромотическую живопись тушью)

Древний Восток. Индия. В древней Индии было 2 цветовые системы:

1) Архаическая или троичная. Цвета: Красный, Белый, Черный.

2) Ведичная, или система основанная на Ведах. Следующие цвета: Красный (восточные лучи Солнца), Белый (южные лучи), Черный (западные лучи), очень черный (северные лучи), Невидимый (центр).

Убранство дворцов выполнялось в трех основных цветах: Белый, Красный, Золото (иногда добавлялись Синий и Голубой)

Традиционные основные цвета в древней Индии: Белый, Красный, Черный, Желтый и Синий. (Картины Рериха наиболее точно передают традиционный колорит древней Индии)

Древний Египет. Отношение к цвету зависит от того, на сколько он солнечный. Более подробно см. статью.

Греко-римская античность. В 5 в. до н.э. Эмпедокл утверждал, что вселенная состоит из: воды (черный), воздуха (белый), огня (красный), и земли (желтый, охра). А все остальное получается путем смешения этих четырех стихий.

Аристотель выделял 3 основных цвета: Белый (вода, воздух, земля), Желтый (огонь), Черный (разрушение, состояние перехода).

Планид в своей "Натуральной истории" выделил 4 основных цвета: Красный, Белый, Желтый и Черный.

Для определения основных цветов Эмпедокл и Планид пользовались зрительными впечатлениями, а Аристотель определял их эксперементальным путем.

Средние века. Западная Европа. После прочтения статьи рассмотрите рис.1

На рис.1 белый цвет символизирует Христа, Бога, ангелов, является чистым непорочным цветом. Желтый цвет - символ просвещения, действия Духа Святого. Красный - огонь, солнце, кровь Христа. Синий - цвет неба, обители Господа. Зеленый - цвет пищи, растительности, земной путь Христа. Черный - подземный цвет, цвет зла, Антихриста. Фиолетовый - цвет противоречий.

Так же достаточно интересна антисистема цветов, куда входили "погасшие" цвета, т.е. любой цвет в сочетании с коричневым.

Средние века. Ближний и средний Восток. Представление о цвете развивается под знаком ислама. С VII века ценятся те же цвета, что и в Западной Европе, только выделяется зеленый: это цвет райского сада. Любимый тип цветовой композиции - многоцветие или полихромия.

Ренессанс. Леонардо Да Винчи - создатель новой цветовой системы. Он считал, что основных цветов 6. Красный, Желтый, Зеленый, Синий, Белый, Черный.

Европа. XVII-XIX века. В это время в истории классификации цвета начинается новый этап. Начинается процесс разделения цвета. Ньютон вводит научную символику разделения цветов. Он берет спектр белого цвета, в котором выделяет все хроматические цвета: Красный, Оранжевый, Зеленый, Голубой (сине-зеленый), Синий, Фиолетовый, добавляя к этому сочетанию Пурпурный (считает этот цвет смешением красного и фиолетового).

В XVII веке в Европе господствует два стиля: 1)Барокко. Восхваляется превосходство цвета. 2)Классицизм. Ценятся только оттенки цветов, основа - приглушенные цвета.

В XVIII веке барокко превращается в рококо. Появляется тяготение к ассиметрии композиции, декору (мягкая деталировка форм), сочетание ярких и чистых тонов цвета с белым и золотом.

Гете в конце века предложил новый способ классификации цветов по физиологическому принципу. См. рис.2

Цвета: Красный, Оранжевый, Желтый, Зеленый, Синий, Фиолетовый.

Треугольник показывает три основных цвета, которыми пользуются художники. Остальные цвета (Оранжевый, Зеленый, Фиолетовый) получаются путем смешивания основных.

В XIX веке в Европе возникает романтизм. В последствии его возникновение приводит к появлению двух противоположным направлениям: натурализму (дотошная передача всех цветов, тонов, оттенков) и импрессионизму (передача образов)

В это же время, современник Гете, Филипп Отто Рунге разработал свою систему классификации цветов используя принцип глобуса или шара. См. рис.3

Вокруг экватора размещен двеннадцатицветный естественный круг, верхний полюс покрыт белым, нижний - черным цветом.

Между чистыми, пестрыми цветами экватора и нецветными полюсами находятся смеси из соответственно чистой краски с белым цветом (вверху шара находятся пастельные краски) или с черным (внизу шара - темные оттенки или потемнения).

Каждый пункт на этом цветном глобусе может быть обусловлен долготой и широтой, что делает возможным определение названия цвета посредством соответствующей системы исчисления. В такой системе он предусмотрел все переходы от любого цвета к любому.

Кроме этого, можно отметить следующих ученых, которые внесли свой вклад в классификацию цвета: Шеврёль (полусфера), Адамс, Бецольд, Гельм Гольц.

Модерн. Цвет становится символом. Особенности эстетики стиля модерн:

1) Предпочтение приглушенных, затемненных цветов, сложных нюансных гамм, множества оттенков при узкой палитре, добавление металлических пигментов (золото, серебро, бронза)

2) Цвет становится в большей степени средством выражения, нежели подражания.

3) Обозначается тенденция сближения цвета к музыке.

Ученый Оствальд усовершенствовал систему сферы Рунге. Он берет круг, разделяет его на 24 части, закрашивает каждый спектр в определенный цвет (см. рис.4), но представляет все цвета в виде замкнутого цветового тела, состоящего из двух конусов, объединенных общим основанием. Единой осью конусов является ахроматический ряд: верхняя точка - белый цвет, нижняя - черный. (см. рис.5).

По окружности основания расположены наиболее насыщенные спектральные цвета (цвета радуги), которые расположены в определенной последовательности: красный - оранжевый - желтый - зеленый - голубой - синий - фиолетовый. (Вы наверняка помните шутливую скороговорку, в которой первая буква каждого слова является первой буквой названия цвета: "Каждый охотник желает знать, где сидит фазан".)


P.S. В настоящее время не принято разделять цвета на второстепенные и главные (исключение встречается в: геральдике, сигнализации и кодировке знаков разметки).