Изучение свойств газов позволило итальянскому физику А. Авогадро в 1811г. высказать гипотезу, которая впоследствии была подтверждена опытными данными, и стала называться законом Авогадро: в равных объемах различных газов при одинаковых условиях (температуре и давлении) содержится одинаковое число молекул.

Из закона Авогадро вытекает важное следствие: моль любого газа при нормальных условиях (0С (273 К) и давлении 101,3 кПа) занимает объем, равный 22,4 л. В этом объеме содержится 6,02 10 23 молекул газа (число Авогадро).

Из закона Авогадро также следует, что массы равных объемов различных газов при одинаковых температуре и давлении относятся друг к другу как молярные массы этих газов:

где m 1 и m 2 – массы,

М 1 и М 2 – молекулярные массы первого и второго газов.

Поскольку масса вещества определяется по формуле

где ρ – плотность г аза,

V – объем газа,

то плотности различных газов при одинаковых условиях пропорциональны их молярным массам. На этом следствии из закона Авогадро основан простейший метод определения молярной массы веществ, находящихся в газообразном состоянии.

.

Из этого уравнения можно определить молярную массу газа:

.

2.4 Закон объемных отношений

Первые количественные исследования реакций между газами принадлежат французскому ученому Гей-Люссаку, автору известного закона о тепловом расширении газов. Измеряя объемы газов, вступивших в реакцию и образующихся в результате реакций, Гей-Люссак пришел к обобщению, известному под названием закона простых объемных отношений: объемы вступающих в реакцию газов относятся друг к другу и объемам образующихся газообразных продуктов реакции как небольшие целые числа, равные их стехиометрическим коэффициентам .

Например, 2H 2 + O 2 = 2H 2 O при взаимодействии двух объемов водорода и одного объема кислорода образуются два объема водяного пара. Закон справедлив в том случае, когда измерения объемов проведены при одном и том же давлении и одной и той же температуре.

2.5 Закон эквивалентов

Введение в химию понятий «эквивалент» и «молярная масса эквивалентов» позволило сформулировать закон, называемый законом эквивалентов: массы (объемы) реагирующих друг с другом веществ пропорциональны молярным массам (объемам) их эквивалентов .

Следует остановиться на понятии объема моля эквивалентов газа. Как следует из закона Авогадро, моль любого газа при нормальных условиях занимает объем, равный 22,4 л. Соответственно, для вычисления объема моля эквивалентов газа необходимо знать число моль эквивалентов в одном моле. Так как один моль водорода содержит 2 моля эквивалентов водорода, то 1 моль эквивалентов водорода занимает при нормальных условиях объем:

3 Решение типовых задач

3.1 Моль. Молярная масса. Молярный объем

Задача 1. Сколько молей сульфида железа (II) содержится в 8,8 г FeS?

Решение Определяем молярную массу (М) сульфида железа (II).

M(FeS)= 56 +32 = 8 8 г/моль

Рассчитаем, сколько молей содержится в 8,8 г FeS:

n = 8.8 ∕ 88 = 0.1 моль.

Задача 2. Сколько молекул содержится в 54 г воды? Чему равна масса одной молекулы воды?

Решение Определяем молярную массу воды.

М(Н 2 О) = 18 г/моль.

Следовательно, в 54 г воды содержится 54/18 = 3 моль Н 2 О. Один моль любого вещества содержит 6,02  10 23 молекул. Тогда в 3 молях (54г Н 2 О) содержится 6,02  10 23  3 = 18,06  10 23 молекул.

Определим массу одной молекулы воды:

m H2O = 18 ∕ (6,02 · 10 23) = 2,99 ·10 23 г.

Задача 3. Сколько молей и молекул содержится в 1 м 3 любого газа при нормальных условиях?

Решение 1 моль любого газа при нормальных условиях занимает объем 22,4 л. Следовательно, в 1 м 3 (1000 л) будет содержаться 44,6 молей газа:

n = 1000/ 22.4 = 44,6 моль.

1 моль любого газа содержит 6,02  10 23 молекул. Из этого следует, что в 1 м 3 любого газа при нормальных условиях содержится

6,02  10 23  44,6 = 2,68  10 25 молекул.

Задача 4. Выразите в молях:

а) 6,02  10 22 молекул С 2 Н 2 ;

б) 1,80  10 24 атомов азота;

в) 3,01  10 23 молекул NH 3 .

Какова молярная масса указанных веществ?

Решение Моль – это количество вещества, в котором содержится число частиц любого определенного вида, равное постоянной Авогадро. Отсюда

а)n С2Н2 = 6,02 · 10 22 /6,02 · 10 23 = 0,1 моль;

б) n N =1,8 · 10 24 / 6,02 · 10 23 = 3 моля;

в) n NH3 =3,01 ·10 23 / 6,02 · 10 23 = 0,5 моль.

Молярная масса вещества в граммах численно равна его относительной молекулярной (атомной) массе.

Следовательно, молярные массы данных веществ равны:

а) М(С 2 Н 2) = 26 г/моль;

б) М(N) = 14 г/моль;

в) М(NH 3) = 17 г/моль.

Задача 5. Определите молярную массу газа, если при нормальных условиях 0,824 г его занимают объем 0,260 л.

Решение При нормальных условиях 1 моль любого газа занимает объем 22,4 л. Вычислив массу 22,4 л данного газа, мы узнаем его молярную массу.

0,824 г газа занимают объем 0,260 л

Х г газа занимают объем 22,4 л

Х = 22,4 · 0,824 ∕ 0,260 = 71 г.

Следовательно, молярная масса газа равна 71 г/моль.

3.2 Эквивалент. Фактор эквивалентности. Молярная масса эквивалентов

Задача 1. Вычислите эквивалент, фактор эквивалентности и молярную массу эквивалентов Н 3 РО 4 при реакциях обмена, в результате которых образуются кислые и нормальные соли.

Решение Запишем уравнения реакций взаимодействия фосфорной кислоты со щелочью:

Н 3 РО 4 + NaOH = NaH 2 PO 4 + H 2 O; (1)

Н 3 РО 4 + 2NaOH = Na 2 HPO 4 + 2H 2 O; (2)

Н 3 РО 4 + 3NaOH = Na 3 PO 4 + 3H 2 O. (3)

Так как фосфорная кислота – трехосновная кислота, она образует две кислые соли (NaH 2 PO 4 – дигидрофосфат натрия и Na 2 HPO 4 – гидрофосфат натрия) и одну среднюю соль (Na 3 PO 4 – фосфат натрия).

В реакции (1) фосфорная кислота обменивает на металл один атом водорода, т.е. ведет себя как одноосновная кислота, поэтому f э (Н 3 РО 4) в реакции (1) равен 1; Э(Н 3 РО 4) = Н 3 РО 4 ; М э (Н 3 РО 4) = 1· М(Н 3 РО 4) = 98 г/моль.

В реакции (2) фосфорная кислота обменивает на металл два атома водорода, т.е. ведет себя как двухосновная кислота, поэтому f э (Н 3 РО 4) в реакции (2) равен 1/2; Э(Н 3 РО 4) = 1/2Н 3 РО 4 ; М э (Н 3 РО 4) = 1/2 · М (Н 3 РО 4) = 49 г/моль.

В реакции (3) фосфорная кислота ведет себя как трехосновная кислота, поэтому f э (Н 3 РО 4) в данной реакции равен 1/3; Э(Н 3 РО 4) = 1/3Н 3 РО 4 ; М э (Н 3 РО 4) = 1/3 · М (Н 3 РО 4) = 32,67 г/моль.

Задача 2 . Избытком гидроксида калия подействовали на растворы: а) дигидрофосфата калия; б) нитрата дигидроксовисмута (III). Напишите уравнения реакций этих веществ с КОН и определите их эквиваленты, факторы эквивалентности и молярные массы эквивалентов.

Решение Запишем уравнения происходящих реакций:

КН 2 РО 4 + 2КОН = К 3 РО 4 + 2 Н 2 О;

Bi(OH) 2 NO 3 + KOH = Bi(OH) 3 + KNO 3 .

Для определения эквивалента, фактора эквивалентности и молярной массы эквивалента можно использовать различные подходы.

Первыйоснован на том, что вещества вступают в реакцию в эквивалентных количествах.

Дигидрофосфат калия взаимодействует с двумя эквивалентами гидроксида калия, т. к. Э(КОН) = КОН. C одним эквивалентом КОН взаимодействует 1/2 KH 2 PO 4 , следовательно, Э(КН 2 PO 4) = 1/2KH 2 PO 4 ; f э (KH 2 PO 4) = 1/2; Мэ (KH 2 PO 4) = 1/2 ·М(KH 2 PO 4) = 68 г/моль.

Нитрат дигидроксовисмута (III) взаимодействует с одним эквивалентом гидроксида калия, следовательно, Э(Bi(OH) 2 NO 3) = Bi(OH) 2 NO 3 ; f э (Bi(OH) 2 NO 3) = 1; М э (Bi(OH) 2 NO 3) = 1 · М(Bi(OH) 2 NO 3) = 305 г/моль.

Второй подход основан на том, что фактор эквивалентности сложного вещества равен единице, деленной на число эквивалентности, т.е. число образовавшихся либо перестроившихся связей.

Дигидрофосфат калия при взаимодействии с КОН обменивает на металл два атома водорода, следовательно, f э (КН 2 РО 4)= 1/2; Э(КН 2 РО 4) = 1/2 КН 2 РО 4 ; М э (1/2 КН 2 РО 4) = 1/2 · М (КН 2 РО 4) = 68 г/моль.

Нитрат дигидроксовисмута (III) при реакции с гидроксидом калия обменивает одну группу NO 3 – , следовательно, (Bi(OH) 2 NO 3) = 1; Э(Bi(OH) 2 NO 3) = Bi(OH) 2 NO 3 ; М э (Bi(OH) 2 NO 3) = 1 · М э (Bi(OH) 2 NO 3) = 305 г/моль.

Задача 3. При окислении 16,74 г двухвалентного металла образовалось 21,54 г оксида. Вычислите молярные массы эквивалентов металла и его оксида. Чему равны молярная и атомная масса металла?

Р ешение Согласно закону сохранения массы веществ, масса оксида металла, образовавшегося при окислении металла кислородом, равна сумме масс металла и кислорода.

Следовательно, масса кислорода, необходимого для образования 21,5 г оксида при окислении 16,74 г металла, составит:

21,54 – 16,74 = 4,8 г.

Согласно закону эквивалентов

m Me ∕ M э (Me) = mO 2 ∕ M э (O 2); 16,74 ∕ M э (Me) = 4,8 ∕ 8.

Следовательно, М э(Ме) = (16,74 · 8) ∕ 4,8 = 28 г/моль.

Молярная масса эквивалента оксида может быть рассчитана как сумма молярных масс эквивалентов металла и кислорода:

Мэ(МеО) = M э (Me) + M э (O 2) = 28 + 8 + 36 г/моль.

Молярная масса двухвалентного металла равна:

М (Ме) = Мэ (Ме) ∕ fэ(Ме) = 28 ∕ 1 ∕ 2 = 56 г/моль.

Атомная масса металла (A r (Me)), выраженная в а.е.м., численно равна молярной массе A r (Me) = 56 а.е.м.

История

Первые количественные исследования реакций между газами принадлежат французскому ученому Гей-Люссаку . Он является автором законов о тепловом расширении газов и закона объемных отношений. Эти законы были объяснены в 1811 году итальянским физиком Амедео Авогадро .

Следствия закона

Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объём .

В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л . Этот объём называют молярным объёмом газа V m . Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона :

.

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму .

Положение это имело громадное значение для развития химии, так как оно дает возможность определять частичный вес тел, способных переходить в газообразное или парообразное состояние. Если через m мы обозначим частичный вес тела, и через d - удельный вес его в парообразном состоянии, то отношение m / d должно быть постоянным для всех тел. Опыт показал, что для всех изученных тел, переходящих в пар без разложения, эта постоянная равна 28,9, если при определении частичного веса исходить из удельного веса воздуха , принимаемого за единицу, но эта постоянная будет равняться 2, если принять за единицу удельный вес водорода . Обозначив эту постоянную, или, что то же, общий всем парам и газам частичный объём через С , мы из формулы имеем с другой стороны m = dC . Так как удельный вес пара определяется легко, то, подставляя значение d в формулу, выводится и неизвестный частичный вес данного тела.

Элементарный анализ, например, одного из полибутиленов указывает, в нём пайное отношение углерода к водороду, как 1 к 2, а потому частичный вес его может быть выражен формулой СН 2 или C 2 H 4 , C 4 H 8 и вообще (СН 2) n . Частичный вес этого углеводорода тотчас определяется, следуя закону Авогадро, раз мы знаем удельный вес, т. е. плотность его пара; он определен Бутлеровым и оказался 5,85 (по отношению к воздуху); т. е. частичный вес его будет 5,85 · 28,9 = 169,06. Формуле C 11 H 22 отвечает частичный вес 154, формуле C 12 H 24 - 168, а C 13 H 26 - 182. Формула C 12 H 24 близко отвечает наблюденной величине, а потому она и должна выражать собою величину частицы нашего углеводорода CH 2 .

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Закон Авогадро" в других словарях:

    ЗАКОН АВОГАДРО - равные объёмы любых идеальных газов при одинаковых условиях (температуре, давлении) содержат одинаковое число частиц (молекул, атомов). Эквивалентная формулировка: при одинаковых давлении и температуре одинаковые количества вещества различных… … Большая политехническая энциклопедия

    закон Авогадро - – закон, согласно которому в равных объемах идеальных газов при одинаковых температуре и давлении содержится одинаковое число молекул. Словарь по аналитической химии … Химические термины

    закон Авогадро - Avogadro dėsnis statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas(ai) Grafinis formatas atitikmenys: angl. Avogadro’s hypothesis; Avogadro’s law; Avogadro’s principle vok. Avogadrosche Regel, f;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    закон Авогадро - Avogadro dėsnis statusas T sritis fizika atitikmenys: angl. Avogadro’s hypothesis; Avogadro’s law vok. Avogadrosche Regel, f; Avogadrosches Gesetz, n; Satz des Avogadro, m rus. закон Авогадро, m pranc. hypothèse d’Avogadro, f; loi d’Avogadro, f … Fizikos terminų žodynas

    закон Авогадро - Avogadro dėsnis statusas T sritis Energetika apibrėžtis Apibrėžtį žr. priede. priedas(ai) MS Word formatas atitikmenys: angl. Avogadro’s law vok. Avogadrosches Gesetz, n rus. закон Авогадро, m pranc. loi d’Avogadro, f … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    См. Химия и Газы. З. вечности вещества, или сохранения массы материи, см. Вещество, Лавуазье, Химия. З. Генри Дальтона см. Растворы. З. Гибса Ле Шателье см. Обратимость химических реакций. З. (теплоемкостей) Дюлонга и Пти см. Теплота и Химия. З.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Необходимое, существенное, устойчивое, повторяющееся отношение между явлениями. 3. выражает связь между предметами, составными элементами данного предмета, между свойствами вещей, а также между свойствами внутри вещи. Существуют 3.… … Философская энциклопедия

    АВОГАДРО ЗАКОН - (Avogadro), основан на высказанной в 1811 г. итальянским физиком Авогадро гипотезе, гласящей, что «при одинаковых условиях t° и давления, в равных объемах всех газов содержится одно и то же число молекул». Из этой гипотезы.,… … Большая медицинская энциклопедия

    - (Avogadro) Амедео, граф ди Кваренья (1776 1856), итальянский физик и химик. В 1811 г. выдвинул гипотезу (ныне известную как закон Авогадро) о том, что равные объемы газов при одном давлении и одинаковой температуре содержат одинаковое число… … Научно-технический энциклопедический словарь

    - (Avogadro) Амедео (1776 1856), итальянский физик и химик. Основатель молекулярной теории строения вещества (1811). Установил один из газовых законов (1811; закон Авогадро), согласно которому в равных объемах идеальных газов при одинаковых… … Современная энциклопедия

Книги

  • Амедео Авогадро. Очерк жизни и деятельности , Г. В. Быков. Итальянскому физику первой половины XIX в. Амедео Авогадро принадлежит закон, носящий его имя. По словам извести го ученого, лауреата Нобелевской премии Л. Полинга, труды Авогадро лежат в…

Амедео Авогадро был одним из итальянских физиков и химиков в девятнадцатом веке. Надо сказать, что образование он получал юридическое, но тяга к математике и физике подтолкнула его самостоятельно заняться изучением этих наук. И в этом деле он преуспел.

В тридцать лет Авогадро становится преподавателем физики в одном из университетских лицеев того времени. Позже он станет профессором математике в университете. Однако, Авогадро известен вовсе не своей успешной карьерой преподавателя точных наук, коих он освоил самостоятельно, он известен, прежде всего, как учёный, и как человек, высказавший одну из основополагающих гипотез физической химии. Он предположил, что если взять равные объёмы двух разных идеальных газов при одном и том же давлении и температуре, то в этих объёмах будет содержаться одинаковое число молекул. Впоследствии гипотеза подтвердилась, и сегодня может быть доказана при помощи теоретических выкладок. Сегодня это правило носит название закона Авогадро. Кроме того, в честь него было названо некое постоянное число, так называемое число Авогадро, о чём пойдёт речь ниже.

Число Авогадро

Все вещества состоят из каких-то структурных элементов, как правило, это либо молекулы, либо атомы, но важно не это. Что должно происходить, когда мы смешиваем два вещества, и они реагируют? Логично, что один структурный элемент, кирпичик, одного вещества должен прореагировать с одним структурным элементом, кирпичиком, другого вещества. Поэтому при полной реакции число элементов для обоих веществ должно быть одинаковым, хотя при этом могут отличаться и вес, и объёмы препаратов. Таким образом, любая химическая реакция должна содержать одинаковое число структурных элементов каждого вещества, либо эти цифры должны быть пропорциональны какому-то числу. Совершенно неважно значение этого числа, но в дальнейшем за основу решили взять двенадцать грамм углерода-12 и подсчитать в нём количество атомов. Оно составляет порядка шести помноженной на десять в двадцать третьей степени. Если вещество содержит такое количество структурных элементов, то говорят об одном моле вещества. Соответственно все химические реакции в теоретических выкладках записываются в молях, то есть смешивают моли веществ.

Как говорилось выше, значение числа Авогадро, в принципе неважно, однако при этом его определяют физическим способом. Поскольку опыты на данный момент имеют недостаточную точность, то данное число всё время уточняется. Можно, конечно, надеется, что когда-нибудь оно будет подсчитано абсолютно точно, но пока до этого далеко. На сегодняшний день последнее уточнение было сделано в 2011 году. Кроме того, в том же году была принята резолюция о том, как грамотно записывать данное число. Поскольку оно всё время уточняется, то его на сегодняшний день записывают как 6.02214Х помноженное на десять в двадцать третьей степени. Такое количество структурных элементов содержится в одном моле вещества. Буква «Х» в данной записи говорит о том, что число уточняется, то есть значение Х в будущем будет уточняться.

Закон Авогадро

В самом начале данной статьи мы упомянули Закон Авогадро. Это правило говорит об одинаковом количестве молекул. В таком случае имеет смысл связать этот закон с числом Авогадро или молем. Тогда закон Авогадро будет утверждать, что моль каждого идеального газа при одной и той же температуре и давление занимает одинаковый объём. Подсчитано, что при нормальных условиях этот объём составляет порядка двадцати четырёх с половиной литров. Есть точное значение этой цифры, 22.41383 литров. И поскольку процессы, происходящие при нормальных условиях, важны и встречаются очень часто, то есть и название для данного объёма, молярный объём газа.

В теоретических выкладках очень часто, рассматривается молярные объёмы газа. Если есть необходимость перейти к другим температурам или давление, то объём, конечно, изменится, однако есть соответствующие формулы из физики, которые позволяют его подсчитать. Просто надо всегда помнить, что моль газа всегда относится к нормальным условиям, то есть это какая-то конкретная температура и какое-то конкретное давление, и согласно постановлению 1982 года при нормальных условиях давление газа составляет десять в пятой степени Паскаль, а температура 273.15 Кельвина.

Помимо очевидного прикладного значения двух понятий, что были рассмотрены выше, есть и более интересные последствия, которые из них вытекают. Так, зная плотность воды и, взяв один моль её, мы можем оценить размеры молекулы. Здесь мы исходим из того, что нам известна атомарная масса молекул воды и углерода. Таким образом, если мы берём для углерода двенадцать грамм, то масса воды определяется согласно пропорциональной зависимости, она равна восемнадцати граммам. Поскольку плотность воды определить несложно, необходимых данных для оценки размера молекулы воды теперь достаточно. Вычисления показывают, что размер молекулы воды порядка десятых долей нанометра.

Интересно и дальнейшее развитие закона Авогадро. Так, Вант-Гоф распространил законы идеальных газов на растворы. Суть сводится к аналогии законов, но в итоге это дало возможность узнать молекулярные массы веществ, которые по-другому получить было бы очень трудно.