Орган – уникальный музыкальный инструмент, имеющий давнюю историю. Про орган можно говорить только в превосходных степенях: самый большой по размеру, самый мощный по силе звука, с самым широким диапазоном звучания и огромным богатством тембров. Именно поэтому его называют «королем музыкальных инструментов».

Прародителем современного органа считают флейту Пана, которая впервые появилась в Древней Греции. Существует сказание, что бог дикой природы, пастушества и скотоводства Пан придумал себе новый музыкальный инструмент, соединив несколько тростниковых трубочек разного размера, чтобы извлекать чудесную музыку, развлекаясь с веселыми нимфами в роскошных долинах и рощах. Чтобы успешно играть на таком инструменте, требовались большие физические усилия и хорошая дыхательная система. Поэтому для облегчения работы музыкантам во ІІ веке до нашей эры, грек Ктесибий, изобрел водяной орган или гидравлос, который считается прототипом современного органа.

Развитие органа

Орган постоянно усовершенствовался и в ХІ веке его стали строить по всей Европе. Наибольшего расцвета органостроение достигло в XVII-XVIII веках в Германии, где музыкальные произведения для органа создавали, такие великие композиторы как Иоганн Себастьян Бах и Дитрих Букстехуде, непревзойденные мастера органной музыки.

Органы отличались не только по красоте и разнообразию звучания, но и по архитектуре и декору — каждый из музыкальных инструментов обладал индивидуальностью, создавался под конкретные задачи, гармонично вписывался во внутреннюю среду помещения.
Для органа подходит только такое помещение, которое обладает отменной акустикой. В отличие от других музыкальных инструментов особенность звучания органа зависит не от корпуса, а от пространства, в котором он находится.

Звуки органа никого не могут оставить равнодушным, они проникают глубоко в сердце, вызывают самые разнообразные чувства, заставляют задумываться о бренности бытия и устремлять свои помыслы к Богу. Поэтому в католических церквях и соборах повсеместно стояли органы, лучшие композиторы писали духовную музыку и собственноручно играли на органе, например, Иоганн Себастьян Бах.

В России орган относился к светским инструментам, так как традиционно в православных храмах было запрещено звучание музыки во время богослужения.

Сегодняшний орган представляет собой сложную систему. Это одновременно духовой и клавишный музыкальный инструмент, имеющий педальную клавиатуру, несколько ручных клавиатур, сотни регистров и от сотен до более чем тридцати тысяч труб. Трубы бывают разнообразными по длине, диаметру, типу строения и материалу изготовления. Они могут быть медными, свинцовыми, жестяными или из разных сплавов, например, свинцово-оловянными. Сложное строение позволяет органу иметь огромный диапазон звучания по высоте и тембру и обладать богатством звуковых эффектов. Орган может имитировать игру других инструментов, поэтому его нередко приравнивают к симфоническому оркестру. Самый большой орган находится в США в концертном зале Бордуок города Атлантик-Сити. У него 7 ручных клавиатур, 33112 труб и 455 регистров.

Звучание органа нельзя сравнить ни с каким другим музыкальным инструментом и даже симфоническим оркестром. Его мощные, торжественные, неземные звуки действуют на душу человека мгновенно, глубоко и ошеломляющее, кажется, что сердце вот-вот разорвется от божественной красоты музыки, небо разверзнется и откроются, до этого момента непостижимые, тайны бытия.

Король инструментов — так часто именуют орган, внешний вид которого вызывает ощущение восторга, а звучание завораживает и воодушевляет. Большой, тяжеловесный струнно-клавишный инструмент, обладающий широчайшим регистром звучания, по праву считается чем-то вроде «легенды во плоти». Кто же изобрел орган и чем уникален этот тяжеловес?

Кто изобрел необычный инструмент?

История легендарного инструмента, научиться играть на котором способен далеко не каждый профессиональный музыкант, насчитывает сотни веков.

Название «organum» упоминается еще в античных писаниях великого Аристотеля и Платона. Но точно ответить, кто изобрел сие чудо, не представляется возможным. По одной из версий его родоначальником является вавилонская волынка, формирующая звук за счет направления струй воздуха в сторону краев трубки. По другой – флейта пана или китайское шэне, функционирующие по такому же принципу. Играть на соединенных между собой дудочках было не очень удобно, поскольку у исполнителя порой в легких не хватало воздуха. Идея качать воздух во время игры мехами стала настоящим спасением.

Близкий брат органа, его водяной аналог, был изобретен греческим умельцем Ктезибием еще в 200-х годах до н.э. Он называется гидравлос. Позднее гидравлическая конструкция была заменена мехами, что дало возможность значительно улучшить качество звучания.

Музыкальные инструменты более привычных для нас размеров и внешнего вида стали появляться в IV веке. В этот период благодаря стараниям Папы Виталиана органы стали задействовать в роли сопровождения католических богослужений. Начиная с первой половины V века струнно-клавишный инструмент стал неизменным церемониальным атрибутом не только византийской, но и всей западно-европейской императорской власти.

Широкое распространение в странах Европы легендарный «клавишник» получил к середине XIV века. Инструмент того времени был далек от совершенства: он имел меньшее количество труб и более широкие клавиши. К примеру, в ручной клавиатуре при ширине самих клавиш порядка 50-70 мм расстояние между ними составляло 15-20 мм. Для извлечения звуков исполнителю приходилось по огромным и тяжелым клавишам не «пробегать» пальчиками, а в буквальном смысле стучать локтями или кулаками.

Наибольшего размаха органостроение приобрело в XVI-XVII веках. В славно известную эпоху барокко мастера научились создавать инструменты, которые своим мощным звучанием смело могли конкурировать с целым симфоническим оркестром. Звуковые возможности инструментов позволяли имитировать звон колокольчиков, рокот камнепада и даже заливистое пение птиц.

Апофеозом органостроения по праву считается 1908 год, когда на всемирной выставке была представлена модель, включающая 6 мануалов. Самый крупный в мире действующий орган весит чуть более 287 тонн. Сейчас он украшает торговый центр «Macy’s Lord & Taylor» в Филадельфии.

То, что ценитель органной музыки наблюдает из зала – фасад инструмента. За ним скрывается просторное помещение, порой включающее по несколько этажей, уставленное механическими элементами и тысячами трубок. Чтобы понять принцип действия сего чуда, стоит рассмотреть хотя бы его краткое описание.

Орган является одним из самых громких музыкальных инструментов. Такой эффект достигается за счет регистров, включающего несколько рядов органных труб. Эти регистры по окраске звучания и целому ряду других объединяющих признаков делятся на несколько групп: микстуры, аликвотны, гамбы, флейты, принципалы. Регистровые трубы звучат в соответствии с нотной записью. Их можно включать как по отдельности, так и одновременно. Для этого задействуются расположенные на боковых панелях клавиатуры рукоятки.

Пультом управления исполнителя, работающего за инструментом, являются мануалы, педальная клавиатура и сами регистры. Число мануалов в зависимости от модификации «клавишника» может варьироваться от 1 до 7. Они располагаются террасой: один непосредственно над другим.

Педальная клавиатура может включать от 5 до 32 клавиш, посредством которых запускаются в действие регистры, формирующие низкие звуки. В зависимости от аппликатуры музыкального инструмента исполнитель нажимает на педальные клавиши носком или каблуком.

Наличие нескольких клавиатур, а также всевозможных тумблеров и рычагов довольно усложняет процесс игры. Поэтому зачастую вместе с исполнителем за инструментом сидит и его помощник. Для удобства чтения нот и достижения синхронности исполнения партия для ног традиционно располагается на отдельном нотном стане непосредственно под партией для рук.

В современных моделях функцию нагнетания воздуха в меха выполняют электромоторы. В средние века эту работу выполняли специально обученные кальканты, услуги которых приходилось оплачивать отдельно.

Несмотря на широкое распространение органов сегодня практически нереально встретить две одинаковых модели, поскольку все они собираются по индивидуальным проектам. Размеры установок могут варьироваться от 1,5 м до 15 м. Ширина крупных моделей достигает 10 м, а глубина – 4 м. Вес таких сооружений измеряется в тоннах.

Рекордсмены разных номинаций

Самого древнего представителя легендарного инструмента, сроки «жизни» которого датируются 1370-1400 годами, можно встретить в Стокгольмском музее. Он привезен из церковного прихода шведского острова Готланд.

Лидер в номинации «самый громкий орган» украшает Зал Согласия в Атлантик-Сити. Рекордсмен включает 7 мануалов и довольно обширный тембровый набор, формируемый за счет 445-и регистров. Звучанием сего гиганта насладиться не получится, поскольку его звук может спровоцировать у слушателей разрыв барабанных перепонок. Весит этот музыкальный инструмент свыше 250 тонн.

Инструмент, украшающий церковь Святой Анны, которая расположена в столице Польши, примечателен тем, что включает самые длинные в мире трубы. Их высота достигает порядка 18 метров, а издаваемый звук, способен в буквальном смысле оглушить. Частотный диапазон инструмента располагается в пределах, охватывающих даже область ультразвука.

Когда неприметная дверь, окрашенная в бежевый цвет, открылась, взгляд выхватил из темноты лишь несколько деревянных ступенек. Сразу за дверью ввысь уходит мощный деревянный короб, похожий на вентиляционный. «Осторожнее, это органная труба, 32 фута, басовый флейтовый регистр, — предупредила моя провожатая. — Подождите, я включу свет». Я терпеливо дожидаюсь, предвкушая одну из самых интересных в моей жизни экскурсий. Передо мной вход в орган. Это единственный музыкальный инструмент, внутрь которого можно зайти


Забавный инструмент — губная гармоника с необычными для этого инструмента раструбами. Но практически точно такую же конструкцию можно встретить в любом большом органе (вроде того, что показан на снимке справа) — именно так устроены «язычковые» органные трубы

Звук трех тысяч труб. Общая схема На схеме представлена упрощенная схема органа с механической трактурой. Фотографии, показывающие отдельные узлы и устройства инструмента, сделаны внутри органа Большого зала Московской государственной консерватории. На схеме не показан магазинный мех, поддерживающий постоянное давление в виндладе, и рычаги Баркера (они есть на снимках). Также отсутствует педаль (ножная клавиатура)

Органу больше ста лет. Он стоит в Большом зале Московской консерватории, том самом знаменитом зале, со стен которого на вас смотрят портреты Баха, Чайковского, Моцарта, Бетховена… Однако все, что открыто глазу зрителя, — это повернутый к залу тыльной стороной пульт органиста и немного вычурный деревянный «проспект» с вертикальными металлическими трубами. Наблюдая фасад органа, человек непосвященный так и не поймет, как и почему играет этот уникальный инструмент. Чтобы раскрыть его секреты, придется подойти к вопросу с другой стороны. В буквальном смысле.

Стать моим экскурсоводом любезно согласилась Наталья Владимировна Малина — хранитель органа, преподаватель, музыкант и органный мастер. «В органе можно передвигаться только лицом вперед», — строго объясняет мне она. К мистике и суевериям это требование не имеет ни малейшего отношения: просто, двигаясь назад или вбок, неопытный человек может наступить на одну из органных труб или задеть ее. А труб этих тысячи.

Главный принцип работы органа, отличающий его от большинства духовых инструментов: одна труба — одна нота. Древним предком органа можно считать флейту Пана. Этот инструмент, существовавший с незапамятных времен в разных уголках мира, представляет собой несколько связанных вместе полых тростинок разной длины. Если подуть под углом в устье самой короткой — раздастся тонкий высокий звук. Более длинные тростинки звучат ниже.

В отличие от обычной флейты менять высоту звучания отдельной трубки нельзя, поэтому флейта Пана может сыграть ровно столько нот, сколько в ней тростинок. Чтобы заставить инструмент издавать очень низкие звуки, нужно включить в его состав трубки большой длины и большого диаметра. Можно сделать много флейт Пана с трубками из разных материалов и разного диаметра, и тогда они будут выдувать одни и те же ноты с разными тембрами. Но играть на всех этих инструментах одновременно не получится — их нельзя удержать в руках, да и дыхания на гигантские «тростинки» не хватит. А вот если поставить все наши флейты вертикально, снабдить каждую отдельную трубку клапаном для впуска воздуха, придумать механизм, который дал бы нам возможность управлять всеми клапанами с клавиатуры и, наконец, создать конструкцию для нагнетания воздуха с его последующим распределением, у нас как раз и получится орган.

На старинном корабле

Трубы в органах делают из двух материалов: дерева и металла. Деревянные трубы, применяющиеся для извлечения басовых звуков, имеют квадратное сечение. Металлические трубы обычно меньшего размера, они цилиндрические или конические по форме и изготавливаются, как правило, из сплава олова и свинца. Если олова больше — труба звонче, если больше свинца, извлекаемый звук более глухой, «ватный».

Сплав олова и свинца очень мягкий — вот почему органные трубы легко поддаются деформации. Если большую металлическую трубу положить на бок, через некоторое время она под собственной тяжестью приобретет овальное сечение, что неизбежно скажется на ее способности извлекать звук. Передвигаясь внутри органа Большого зала Московской консерватории, я стараюсь касаться только деревянных частей. Если наступить на трубу или неловко схватиться за нее, у органного мастера появятся новые хлопоты: трубу придется «лечить» — выправлять, а то и запаивать.

Орган, внутри которого я нахожусь, — далеко не самый большой в мире и даже в России. По размерам и количеству труб он уступает органам Московского дома музыки, Кафедрального собора в Калининграде и Концертного зала им. Чайковского. Главные рекордсмены находятся за океаном: например, инструмент, установленный в Зале съездов города Атлантик-Сити (США), насчитывает более 33 000 труб. В органе Большого зала консерватории труб в десять раз меньше, «всего» 3136, но и это значительное количество невозможно разместить компактно на одной плоскости. Орган внутри — это несколько ярусов, на которых рядами установлены трубы. Для доступа органного мастера к трубам на каждом ярусе сделан узкий проход в виде дощатого помоста. Ярусы соединены между собой лестницами, в которых роль ступенек выполняют обычные перекладины. Внутри органа тесно, а передвижение между ярусами требует известной ловкости.

«Мой опыт говорит о том, — рассказывает Наталья Владимировна Малина, — что органному мастеру лучше всего быть худощавого сложения и иметь небольшой вес. Человеку с иными габаритами здесь сложно работать, не нанеся ущерба инструменту. Недавно электрик — грузный мужчина — менял лампочку над органом, оступился и выломал пару дощечек из дощатой кровли. Обошлось без жертв и увечий, но выпавшие дощечки повредили 30 органных труб».

Мысленно прикидывая, что в моем теле легко поместилась бы пара органных мастеров идеальных пропорций, я с опаской поглядываю на хлипкие с виду лестницы, ведущие на верхние ярусы. «Не беспокойтесь, — успокаивает меня Наталья Владимировна, — идите только вперед и повторяйте движения за мной. Конструкция крепкая, она вас выдержит».

Свистковые и язычковые

Мы поднимаемся на верхний ярус органа, откуда открывается недоступный простому посетителю консерватории вид на Большой зал с верхней точки. На сцене внизу, где только что окончилась репетиция струнного ансамбля, ходят маленькие человечки со скрипками и альтами. Наталья Владимировна показывает мне вблизи трубы испанских регистров. В отличие от прочих труб, они расположены не вертикально, а горизонтально. Образуя своего рода козырек над органом, они трубят прямо в зал. Создатель органа Большого зала Аристид Кавайе-Коль происходил из франко-испанского рода органных мастеров. Отсюда и пиренейские традиции в инструменте на Большой Никитской улице в Москве.

Кстати, об испанских регистрах и регистрах вообще. «Регистр» — одно из ключевых понятий в конструкции органа. Это ряд органных труб определенного диаметра, образующих хроматический звукоряд соответственно клавишам своей клавиатуры или ее части.

В зависимости от мензуры входящих в их состав труб (мензура — соотношение важнейших для характера и качества звучания параметров трубы) регистры дают звук с различной тембровой окраской. Увлекшись сравнениями с флейтой Пана, я чуть не упустил одну тонкость: дело в том, что далеко не все трубы органа (подобно тростинкам старинной флейты) являются аэрофонами. Аэрофон — это духовой инструмент, в котором звучание образуется в результате колебаний столба воздуха. К таким относятся флейта, труба, туба, валторна. А вот саксофон, гобой, губная гармошка состоят в группе идиофонов, то есть «самозвучащих». Здесь колеблется не воздух, а обтекаемый потоком воздуха язычок. Давление воздуха и сила упругости, противодействуя, заставляют язычок дрожать и распространять звуковые волны, которые усиливаются раструбом инструмента как резонатором.

В органе большинство труб — аэрофоны. Их называют лабиальными, или свистковыми. Идиофонные трубы составляют особую группу регистров и носят наименование язычковых.

Сколько рук у органиста?

Но как же музыканту удается заставить все эти тысячи труб — деревянных и металлических, свистковых и язычковых, открытых и закрытых — десятки или сотни регистров… звучать в нужное время? Чтобы это понять, спустимся на время с верхнего яруса органа и подойдем к кафедре, или пульту органиста. Непосвященного при виде этого устройства охватывает трепет как перед приборной доской современного авиалайнера. Несколько ручных клавиатур — мануалов (их может быть пять и даже семь!), одна ножная плюс еще какие-то таинственные педали. Еще есть множество вытяжных рычагов с надписями на рукоятках. Зачем все это?

Разумеется, у органиста всего две руки и играть одновременно на всех мануалах (в органе Большого зала их три, что тоже немало) он не сможет. Несколько ручных клавиатур нужны для того, чтобы механически и функционально разделить группы регистров, подобно тому как в компьютере один физический хард-драйв делится на несколько виртуальных. Так, например, первый мануал органа Большого зала управляет трубами группы (немецкий термин — Werk) регистров под названием Grand Orgue. В нее входит 14 регистров. Второй мануал (Positif Expressif) отвечает также за 14 регистров. Третья клавиатура — Recit expressif — 12 регистров. И наконец, 32-клавишная ножная клавиатура, или «педаль», работает с десятью басовыми регистрами.

Рассуждая с точки зрения профана, даже 14 регистров на одну клавиатуру — это как-то многовато. Ведь, нажав одну клавишу, органист способен заставить зазвучать сразу 14 труб в разных регистрах (а реально больше из-за регистров типа mixtura). А если нужно исполнить ноту всего лишь в одном регистре или в нескольких избранных? Для этой цели собственно и применяются вытяжные рычаги, расположенные справа и слева от мануалов. Вытянув рычаг с написанным на рукоятке названием регистра, музыкант открывает своего рода заслонку, открывающую доступ воздуха к трубам определенного регистра.

Итак, чтобы сыграть нужную ноту в нужном регистре, надо выбрать управляющий этим регистром мануал или педальную клавиатуру, вытащить соответствующий данному регистру рычаг и нажать на нужную клавишу.

Мощное дуновение

Финальная часть нашей экскурсии посвящена воздуху. Тому самому воздуху, который заставляет орган звучать. Вместе с Натальей Владимировной мы спускаемся на этаж ниже и оказываемся в просторном техническом помещении, где нет ничего от торжественного настроя Большого зала. Бетонный пол, белые стены, уходящие вверх опорные конструкции из старинного бруса, воздуховоды и электродвигатель. В первое десятилетие существования органа здесь в поте лица трудились качальщики-кальканты. Четыре здоровых мужика вставали в ряд, хватались обеими руками за палку, продетую в стальное кольцо на стойке, и попеременно, то одной, то другой ногой давили на рычаги, надувающие мех. Смена была рассчитана на два часа. Если концерт или репетиция длились дольше, уставших качальщиков сменяло свежее подкрепление.

Старые мехи, числом четыре, сохранились до сих пор. Как рассказывает Наталья Владимировна, по консерватории ходит легенда о том, что однажды труд качальщиков пытались заменить конской силой. Для этого якобы был даже создан специальный механизм. Однако вместе с воздухом в Большой зал поднимался запах конского навоза, и приходивший на репетицию основатель русской органной школы А.Ф. Гедике, взяв первый аккорд, недовольно водил носом и приговаривал: «Воняет!»

Правдива эта легенда или нет, но в 1913 году мускульную силу окончательно заменил электродвигатель. С помощью шкива он раскручивал вал, который в свою очередь через кривошипно-шатунный механизм приводил в движение мехи. Впоследствии и от этой схемы отказались, и сегодня воздух в орган закачивает электровентилятор.

В органе нагнетаемый воздух попадает в так называемые магазинные мехи, каждый из которых связан с одной из 12 виндлад. Виндлада — это имеющий вид деревянного короба резервуар для сжатого воздуха, на котором, собственно, и установлены ряды труб. На одной виндладе обычно помещается несколько регистров. Большие трубы, которым не хватает места на виндладе, установлены в стороне, и с виндладой их связывает воздухопровод в виде металлической трубки.

Виндлады органа Большого зала (конструкция «шлейфлада») разделены на две основные части. В нижней части с помощью магазинного меха поддерживается постоянное давление. Верхняя поделена воздухонепроницаемыми перегородками на так называемые тоновые каналы. В тоновый канал имеют выход все трубы разных регистров, управляемые одной клавишей мануала или педали. Каждый тоновый канал соединен с нижней частью виндлады отверстием, закрытым подпружиненным клапаном. При нажатии клавиши через трактуру движение передается клапану, он открывается, и сжатый воздух попадает наверх, в тоновый канал. Все трубы, имеющие выход в этот канал, по идее должны начать звучать, но… этого, как правило, не происходит. Дело в том, что через всю верхнюю часть виндлады проходят так называемые шлейфы — заслонки с отверстиями, расположенные перпендикулярно тоновым каналам и имеющие два положения. В одном из них шлейфы полностью перекрывают все трубы данного регистра во всех тоновых каналах. В другом — регистр открыт, и его трубы начинают звучать, как только после нажатия клавиши воздух попадет в соответствующий тоновый канал. Управление шлейфами, как нетрудно догадаться, осуществляется рычагами на пульте через регистровую трактуру. Попросту говоря, клавиши разрешают звучать всем трубам в своих тоновых каналах, а шлейфы определяют избранных.

Благодарим руководство Московской государственной консерватории и Наталью Владимировну Малину за помощь в подготовке этой статьи

Источник: « В мире науки» , №3, 1983. Авторы: Невиль Х. Флетчер и Сусанна Туэйтс

Величественное звучание органа создаётся благодаря взаимодействию строго синхронизированных по фазе воздушной струи, проходящей через разрез в трубе, и воздушного столба, резонирующего в её полости.

Ни один музыкальный инструмент не может сравниться с органом по силе, тембру, диапазону, тональности и величественности звучания. Подобно многим музыкальным инструментам, устройство органа постоянно совершенствовалось благодаря усилиям многих поколений искусных мастеров, медленно накапливавших опыт и знания. К концу XVII в. орган в основном приобрёл свою современную форму. Два наиболее выдающихся физика XIX в. Герман фон Гельмгольц и лорд Рэлей выдвинули противоположные теории, объясняющие основной механизм образования звуков в органных трубах , но из-за отсутствия необходимых приборов н инструментов их спор так и не был решён. С появлением осциллографов н других современных приборов стало возможным детальное изучение механизма действия органа. Оказалось, что как теория Гельмгольца, так и теория Рэлея справедливы для определённых величин давления, под которым воздух нагнетается в органную трубу. Далее в статье будут изложены результаты последних исследований, которые во многом не совпадают с объяснением механизма действия органа, приводимым в учебниках.

Трубки, вырезанные из камыша или других растений с полым стеблем, были, вероятно, первыми духовыми музыкальными инструментами. Они издают звуки, если дуть поперёк открытого конца трубки, или дуть в трубку, вибрируя губами, или, защемив конец трубки, вдувать воздух, заставляя вибрировать её стенки. Развитие этих трёх видов простейших духовых инструментов привело к созданию современной флейты, трубы и кларнета, из которых музыкант может извлекать звуки в довольно большом диапазоне частот.

Параллельно создавались и такие инструменты, в которых каждая трубка предназначалась для звучания на одной определённой ноте. Простейший из таких инструментов – это свирель (или «флейта Пана»), которая обычно имеет около 20 трубок различной длины, закрытых с одного конца и издающих звуки, если дуть поперёк другого, открытого конца. Самым большим и сложным инструментом этого типа является орган, содержащий до 10000 труб, которыми органист управляет при помощи сложной системы механических передач. Орган ведёт своё происхождение из глубокой древности. Глиняные фигурки, изображавшие музыкантов, играющих на инструменте из многих труб, снабжённых мехами, были изготовлены в Александрии ещё во II в. до н.э. К X в. орган начинает использоваться в христианских церквях, и в Европе появляются написанные монахами трактаты об устройстве органов. По преданию, большой орган , построенный в Xв. для Винчестерского собора в Англии, имел 400 металлических труб, 26 мехов и две клавиатуры с 40 клавишами, где каждая клавиша управляла десятью трубами. На протяжении последующих столетий устройство органа совершенствовалось в механическом и музыкальном отношении, и уже в 1429 г. в Амьенском соборе был построен орган, имевший 2500 труб. В Германии к концу XVII в. органы уже приобрели свою современную форму.

Орган, установленный в 1979 г. в концертном зале Сиднейского оперного театра в Австралии, является самым большим и технически совершенным органом в мире. Спроектирован и построен Р. Шарпом. В нем имеется около 10500 труб, управляемых с помощью механической передачи пятью ручными и одной ножной клавиатурами. Орган может управляться автоматически магнитной лентой, на которой в цифровой форме ранее было записано исполнение музыканта.

Термины, применяемые для описания устройства органа , отражают их происхождение от трубчатых духовых инструментов, в которые воздух вдувался ртом. Трубы органа сверху открыты, а снизу имеют суженную конусообразную форму. Поперёк сплющенной части, над конусом, проходит «ротик» трубы (разрез). Внутри трубы помешен «язычок» (горизонтальное ребро), так что между ним и нижней «губой» образуется «лабиальное отверстие» (узкая щель). Воздух нагнетается в трубу большими мехами и поступает в её конусообразное основание под давлением от 500 до 1000 паскалей (от 5 до 10 см вод. ст.). Когда при нажатии соответствующей педали и клавиши воздух входит в трубу, он устремляется вверх, образуя при выходе из лабиальной щели широкую плоскую струю. Струя воздуха проходит поперёк прорези «ротика» и, ударяясь о верхнюю губу, взаимодействует с воздушным столбом в самой трубе; в результате создаются устойчивые колебания, которые и заставляют трубу «говорить». Сам по себе вопрос, каким образом происходит в трубе этот внезапный переход от молчания к звучанию, очень сложен и интересен, но в данной статье он не рассматривается. Разговор в основном будет идти о процессах, которые обеспечивают непрерывное звучание органных труб и создают их характерную тональность.

Органная труба возбуждается воздухом, поступающим в её нижний конец и образующим струю при прохождении через щель между нижней губой и язычком. В разрезе струя взаимодействует с воздушным столбом в трубе у верхней губы и проходит то внутри трубы, то вне её. В воздушном столбе создаются установившиеся колебания, заставляющие трубу звучать. Давление воздуха, изменяющееся по закону стоячей волны, показано цветной штриховкой. На верхний конец трубы насаживается съемная муфта или заглушка, которые позволяют при настройке слегка изменять длину воздушного столба.

Может показаться, что задача описания воздушной струи, порождающей и сохраняющей звучание органа, полностью относится к теории потоков жидкостей и газов. Выяснилось, однако, что весьма трудно теоретически рассмотреть движение даже постоянного, плавного, ламинарного потока, что же касается полностью турбулентной струи воздуха, которая движется в органной трубе, то её анализ невероятно сложен. К счастью, турбулентность, представляющая собой сложный вид движения воздуха, в действительности упрощает характер воздушного потока. Если бы этот поток был ламинарным, то взаимодействие струи воздуха с окружающей средой зависело бы от их вязкости. В нашем случае турбулентность заменяет вязкость в качестве определяющего фактора взаимодействия в прямой зависимости от ширины воздушного потока. При строительстве органа особое внимание уделяется тому, чтобы воздушные потоки в трубах были полностью турбулентны, что достигается с помощью мелких нарезок по кромке язычка. Как ни удивительно, в отличие от ламинарного турбулентный поток устойчив и может быть воспроизведён.

Полностью турбулентный поток постепенно смешивается с окружающим воздухом. Процесс расширения и замедления при этом сравнительно несложен. Кривая, изображающая изменение скорости потока в зависимости от расстояния от центральной плоскости его сечения, имеет вид перевёрнутой параболы, вершина которой соответствует максимальному значению скорости. Ширина потока возрастает пропорционально расстоянию от лабиальной щели. Кинетическая энергия потока остаётся неизменной, поэтому уменьшение его скорости пропорционально корню квадратному из расстояния от щели. Эта зависимость подтверждается как расчётами, так и результатами эксперимента (при учёте небольшой области перехода вблизи лабиальной щели).

В уже возбуждённой и звучащей органной трубе воздушный поток попадает из лабиальной щели в интенсивное звуковое поле в прорези трубы. Движение воздуха, связанное с генерацией звуков, направлено через прорезь и, следовательно, перпендикулярно плоскости потока. Пятьдесят лет назад Б. Брауну из колледжа Лондонского университета удалось сфотографировать ламинарный поток задымлённого воздуха в звуковом поле. На снимках было отмечено образование извилистых волн, увеличивающихся по мере их продвижения вдоль потока, пока последний не распадался на два ряда вихревых колец, вращающихся в противоположных направлениях. Упрошенная интерпретация этих и подобных им наблюдений привела к неверному описанию физических процессов в органных трубах, которое можно найти во многих учебниках.

Более плодотворный метод изучения действительного поведения воздушной струи в звуковом поле заключается в экспериментировании с отдельно взятой трубой, в которой звуковое поле создаётся с помощью репродуктора. В результате таких исследований, проведённых Дж. Колтманом в лаборатории компании Westinghouse Electric Corporation и группой с моим участием в Университете Новой Англии в Австралии, были разработаны основы современной теории физических процессов, происходящих в органных трубах. Фактически ещё Рэлей дал тщательное и почти полное математическое описание ламинарных потоков невязких сред. Поскольку обнаружилось, что турбулентность не усложняет, а упрощает физическую картину воздушной струн, оказалось возможным использовать метод Рэлея с небольшими изменениями для описания воздушных потоков, экспериментально полученных и исследованных Колтманом и нашей группой.

Если бы в трубе не было лабиальной щели, то можно было бы ожидать, что воздушная струя в виде полосы движущегося воздуха просто смещалась бы назад и вперёд вместе со всем остальным воздухом в прорези трубы под воздействием акустических колебаний. В действительности же при выходе струи из щели она эффективно стабилизируется самой щелью. Этот эффект можно сравнить с результатом наложения на общее колебательное движение воздуха в звуковом поле строго сбалансированного смешения, локализованного в плоскости горизонтального ребра. Это локализованное смешение, которое имеет ту же частоту и амплитуду, что и звуковое поле, и в результате создаёт у горизонтального ребра нулевое смешение струи, сохраняется в движущемся потоке воздуха и создаёт извилистую волну.

Пять труб разной конструкции производят звуки одинаковой высоты, но разного тембра. Вторая труба слева – это дульсиана, обладающая нежным, тонким звучанием, напоминающим звучание струнного инструмента. Третья труба – открытый диапазон, дающий светлый, звонкий звук, который наиболее характерен для органа. У четвертой трубы звук сильно приглушённой флейты. Пятая труба – Waldflote (« лесная флейта») с мягким звучанием. Деревянная труба слева закрыта заглушкой. Она имеет ту же основную частоту колебаний, что и другие трубы, но резонирует на нечётных обертонах, частоты которых в нечётное число раз больше основной частоты. Длина остальных труб не совсем одинакова, так как для получения одинаковой высоты тона производится «коррекция конца».

Как показал Рэлей для исследованного им типа струи и как мы всесторонне подтвердили для случая с расходящейся турбулентной струёй, волна распространяется вдоль потока со скоростью несколько меньшей половины скорости движения воздуха в центральной плоскости струи. При этом по мере движения вдоль потока амплитуда волны возрастает почти по экспоненте. Как правило, она увеличивается вдвое при перемещении волны на один миллиметр и её воздействие быстро становится преобладающим по отношению к простому возвратно-поступательному боковому перемещению, вызываемому звуковыми колебаниями.

Было установлено, что наибольшая скорость увеличения волны достигается в том случае, когда её длина вдоль потока в шесть раз превышает ширину потока в данной точке. С другой стороны, если длина волны оказывается меньше ширины потока, то амплитуда не увеличивается и волна может вообще исчезнуть. Поскольку воздушная струя расширяется и замедляет движение по мере удаления от щели, распространяться по длинным потокам с большой амплитудой могут только длинные волны, то есть низкочастотные колебания. Это обстоятельство окажется немаловажным при последующем рассмотрении создания гармонического звучания органных труб.

Рассмотрим теперь воздействие на воздушную струю звукового поля органной трубы. Нетрудно представить, что акустические волны звукового поля в прорези трубы заставляют кончик воздушной струи перемешаться поперёк верхней губы прорези, так что струя оказывается то внутри трубы, то вне её. Это напоминает картину, когда толкают уже раскачивающиеся качели. Воздушный столб в трубе уже колеблется, и, когда порывы воздуха входят в трубу синхронно с колебанием, они сохраняют силу колебаний, несмотря на различные потери энергии, связанные с распространением звука и трением воздуха о стенки трубы. Если же порывы воздуха не совпадают с колебаниями воздушного столба в трубе, они будут подавлять эти колебания и звук будет затухать.

Форма воздушной струи показана на рисунке в виде ряда последовательных кадров при выходе из лабиальной щели в движущееся акустическое поле, создаваемое в «ротике» трубы воздушным столбом, который резонирует внутри трубы. Периодическое смещение воздуха в разрезе ротика создаёт извилистую волну, движущуюся со скоростью вдвое меньшей скорости движения воздуха в центральной плоскости струи и увеличивающейся по экспоненте, пока её амплитуда не превысит ширину самой струи. Горизонтальные сечения показывают отрезки пути, которые волна в струе проходит за последовательные четверти периода колебаний Т . Секущие линии сближаются с уменьшением скорости струи. В органной трубе верхняя губа расположена в месте, указанном стрелкой. Воздушная струя попеременно выходит из трубы и входит в неё.

Измерение звукопроизводящих свойств воздушной струи можно осуществить, помещая в открытый конец трубы фетровые или пенопластовые клинья, препятствующие звучанию, и создавая звуковую волну небольшой амплитуды с помощью громкоговорителя. Отражаясь от противоположного конца трубы, звуковая волна взаимодействует у разреза «ротика» с воздушной струёй. Взаимодействие струи со стоячей волной внутри трубы измеряется с помощью переносного микрофона-тестера. Таким способом удается обнаружить, увеличивает или уменьшает воздушная струя энергию отраженной волны в нижней части трубы. Для того чтобы труба звучала, струя должна увеличивать энергию. Результаты измерения выражаются в величине акустической «проводимости», определяемой как отношение акустического потока на выходе из разреза « ротика» к звуковому давлению непосредственно за резрезом. Кривая значений проводимости при различных сочетаниях давления нагнетания воздуха и частоты колебаний имеет форму спирали, как показано на следующем рисунке.

Связь между возникновением акустических колебаний в прорези трубы и моментом поступления очередной порции воздушной струи на верхнюю губу прорези определяется отрезком времени, за который волна в воздушном потоке проходит расстояние от лабиальной щели до верхней губы. Мастера по изготовлению органов называют это расстояние «подрезом». Если «подрез» велик или давление (а следовательно, и скорость движения) воздуха низкое, то время движения будет большим. И наоборот, если «подрез» мал или давление воздуха высокое, то время движения будет небольшим.

Для того чтобы точно определить фазовое соотношение между колебаниями воздушного столба в трубе и поступлениями порций воздушной струи на внутреннюю кромку верхней губы, необходимо более подробно изучить характер воздействия этих пропорций на воздушный столб. Гельмгольц считал, что главным фактором здесь является объем воздушного потока, доставляемого струёй. Поэтому для того, чтобы порции струи сообщали как можно больше энергии колеблющемуся воздушному столбу, они должны поступать в тот момент, когда давление у внутренней части верхней губы достигает максимума.

Рэлей выдвигал другое положение. Он доказывал, что, поскольку прорезь находится сравнительно недалеко от открытого конца трубы, акустические волны у прорези, на которые воздействует воздушная струя, не могут создавать большое давление. Рэлей считал, что воздушный поток, поступая в трубу, фактически наталкивается на преграду и почти останавливается, что быстро создаёт в нём высокое давление, которое и оказывает воздействие на его движение в трубе. Поэтому, по мнению Рэлея, воздушная струя будет передавать максимальное количество энергии в том случае, если она будет поступать в трубу в момент, когда максимальным будет не давление, а сам поток акустических волн. Сдвиг между этими двумя максимумами составляет одну четверть периода колебаний воздушного столба в трубе. Если провести аналогию с качелями, то это различие выражается в толкании качелей, когда они находятся в верхней точке и обладают максимальной потенциальной энергией (по Гельмгольцу), и в момент, когда они находятся в самой нижней точке и обладают максимальной скоростью (по Рэлею).

Кривая акустической проводимости струи имеет форму спирали. Расстояние от начальной точки указывает величину проводимости, а угловое положение – сдвиг фаз между акустическим потоком на выходе из прорези и звуковым давлением за прорезью. Когда поток совпадает по фазе с давлением, значения проводимости лежат в правой половине спирали и происходит рассеяние энергии струи. Для того чтобы струя генерировала звук, значения проводимости должны находиться в левой половине спирали, что имеет место при компенсации или задержке по фазе движения струи по отношению к давлению за разрезом трубы. В этом случае длина отраженной волны выше длины падающей волны. Величина опорного угла зависитот того, какой из двух механизмов доминирует в возбуждении трубы: механизм Гельмгольца или механизм Рэлея. При проводимости, соответствующей верхней половине спирали, струя понижает собственную резонансную частоту трубы, а когда значение проводимости находится в нижней части спирали, повышает собственную резонансную частоту трубы.

График движения воздушного потока в трубе (пунктирная кривая) при данном отклонении струи несимметричен по отношению к нулевой величине отклонения, поскольку губа трубы устроена так, чтобы разрезать струю не по её центральной плоскости. Когда отклонение струи происходит по простой синусоиде с большой амплитудой (сплошная кривая черного цвета), воздушный поток, поступающий в трубу (цветная кривая), «насыщается» сначала у одной крайней точки отклонения струи, когда она полностью выходит из трубы. При ещё большей амплитуде происходит насыщение воздушного потока и у другой крайней точки отклонения, когда струя полностью входит в трубу. Смещение губы придает потоку асимметричную волновую форму, обертоны которой имеют частоты, кратные частоте отклоняющей волны.

На протяжении 80 лет задача оставалась нерешённой. Более того, новые исследования фактически не проводились. И лишь теперь она нашла удовлетворительное решение благодаря работам Л. Кремера и X. Лизинга из Института им. Генриха Герца в Зап. Берлине, С. Эллера из Военно-морской академии США, Колтмана и нашей группы. Коротко говоря, и Гельмгольц, и Рэлей оба были отчасти правы. Соотношение между двумя механизмами воздействия определяется давлением нагнетаемого воздуха и частотой звука, причём механизм Гельмгольца оказывается основным при низких давлениях и высоких частотах, а механизм Рэлея – при высоких давлениях и низких частотах. Для органных труб стандартной конструкции механизм Гельмгольца играет обычно более важную роль.

Колтман разработал простой и эффективный способ изучения свойств воздушной струи, который был несколько модифицирован и усовершенствован в нашей лаборатории. В основе этого метода лежит изучение воздушной струи у прорези органной трубы, когда дальний конец её закрыт фетровыми или пенопластовыми звукопоглощающими клиньями, не дающими трубе звучать. Затем из репродуктора, помещённого у дальнего конца, вниз по трубе подаётся звуковая волна, которая отражается от края прорези сначала при наличии нагнетаемой струи, а потом без неё. В обоих случаях падающая и отражённая волны взаимодействуют внутри трубы, создавая стоячую волну. Измеряя с помощью небольшого микрофона-зонда изменения в конфигурации волны при подаче воздушной струи, можно определить, увеличивает или уменьшает струя энергию отражённой волны.

В наших экспериментах фактически измерялась «акустическая проводимость» воздушной струи, которая определяется отношением акустического потока на выходе из прорези, создаваемого присутствием струи, к акустическому давлению непосредственно внутри прорези. Акустическая проводимость характеризуется величиной и фазовым углом, которые можно представить графически в виде функции частоты или давления нагнетания. Если представить график проводимости при независимом изменении частоты и давления, то кривая будет иметь форму спирали (см. рисунок). Расстояние от начальной точки спирали указывает величину проводимости, а угловое положение точки на спирали соответствует запаздыванию фазы извилистой волны, возникающему в струе под воздействием акустических колебаний в трубе. Запаздывание на одну длину волны соответствует 360° по окружности спирали. Вследствие особых свойств турбулентной струи оказалось, что при умножении величины проводимости на квадратный корень из величины давления все величины, измеренные для данной органной трубы, укладываются на одной и той же спирали.

Если давление остаётся постоянным, а частота поступающих звуковых волн растёт, то точки, указывающие величину проводимости, приближаются по спирали к её середине по часовой стрелке. При постоянной частоте и увеличении давления эти точки удаляются от середины в противоположном направлении.

Внутренний вид органа Сиднейского оперного театра. Видны некоторые трубы его 26 регистров. Большая часть труб сделана из металла, некоторые изготовлены из дерева. Длина звучащей части трубы удваивается через каждые 12 труб, а диаметр трубы удваивается примерно через каждые 16 труб. Многолетний опыт мастеров – создателей органов позволил им найти наилучшие пропорции, обеспечивающие устойчивый тембр звучания.

Когда точка величины проводимости находится в правой половине спирали, струя отбирает энергию у потока в трубе, и поэтому происходит потеря энергии. При положении точки в левой половине струя передаст энергию потоку и тем самым действует как генератор звуковых колебаний. При положении значения проводимости в верхней половине спирали струя понижает собственную резонансную частоту трубы, а когда эта точка находится в нижней половине, струя повышает собственную резонансную частоту трубы. Величина угла, характеризующего отставание по фазе, зависит от того, по какой схеме – Гельмгольца или Рэлея – осуществляется основное возбуждение трубы, а это, как было показано, определяется величинами давления и частоты. Однако этот угол, отсчитываемый от правой части горизонтальной оси (правая четверть), никогда не бывает значительно больше нуля.

Поскольку 360° по окружности спирали соответствует отставанию по фазе, равному длине и извилистой волны, распространяющейся вдоль воздушной струи, величины такого отставания от значительно меньших четверти длины волны до почти трёх четвёртых её длины будут лежать на спирали от центральной линии, то есть в той части, где струя действует как генератор звуковых колебаний. Мы также видели, что при постоянной частоте отставание по фазе является функцией давления нагнетаемого воздуха, от которой зависят как скорость самой струи, так и скорость распространения извилистой волны вдоль струи. Поскольку скорость такой волны составляет половину скорости струи, которая в свою очередь прямо пропорциональна корню квадратному из величины давления, изменение фазы струи на половину длины волны возможно лишь при значительном изменении давления. Теоретически давление может меняться в девятикратном размере, прежде чем труба перестаёт производить звучание на своей основной частоте, если другие условия не нарушаются. На практике, однако, труба начинает звучать на более высокой частоте до достижения указанного высшего предела изменения давления.

Следует отметить, что для восполнения потерь энергии в трубе и обеспечения устойчивости звука, несколько витков спирали может уйти далеко влево. Заставить трубу звучать может только ещё один такой виток, местоположение которого соответствует примерно трём полуволнам в струе. Так как проводимость струн в этой точке низка, продуцируемый звук слабее любого звука, соответствующего точке на внешнем витке спирали.

Форма спирали проводимости может ещё больше усложниться, если величина отклонения у верхней губы превышает ширину самой струи. При этом струя почти полностью выдувается из трубы и вдувается в неё обратно на каждом цикле перемещения, и количество энергии, которую она сообщает отражённой волне в трубе, перестаёт зависеть от дальнейшего увеличения амплитуды. Соответственно снижается и эффективность воздушной струн в режиме генерации акустических колебаний. В этом случае увеличение амплитуды отклонения струи приводит лишь к уменьшению спирали проводимости.

Снижение эффективности струи мри увеличении амплитуды отклонения сопровождается возрастанием потерь энергии в органной трубе. Колебания в трубе быстро устанавливаются на более низком уровне, при котором энергия струи точно компенсирует потери энергии в трубе. Интересно отметить, что в большинстве случаев потери энергии вследствие турбулентности и вязкости значительно превышают потери, связанные с рассеянием звуковых волн через прорезь и открытый коней трубы.

Разрез органной трубы диапазонного типа, на котором видно, что язычок имеет насечку для соэданияоднородного турбулентного движения струи воздуха. Труба изготовлена из «краплёного металла» – сплава с большим содержанием олова и добавкой свинца. При изготовлении листового материала из этого сплава на нём закрепляется характерный рисунок, который хорошо виден на фотографии.

Разумеется, действительное звучание трубы в органе не ограничено одной определённой частотой, но содержит и звуки более высокой частоты. Можно доказать, что эти обертоны являются точными гармониками основной частоты и отличаются от неё в целое число раз. При постоянных условиях воздухонагнетания форма звуковой волны на осциллографе остаётся совершенно одинаковой. Малейшее отклонение частоты гармоник от величины, строго кратной основной частоте, приводит к постепенному, но чётко видимому изменению формы волны.

Это явление представляет интерес, потому что резонансные колебания воздушного столба в органной трубе, как и в любой открытой трубе, устанавливаются на частотах, которые несколько отличаются от частот гармоник. Дело в том, что при увеличении частоты рабочая длина трубы становится немного меньше из-за изменения акустического потока у открытых концов трубы. Как будет показано, обертоны в органной трубе создаются за счёт взаимодействия воздушной струи и губы прорези, а сама труба служит для обертонов более высокой частоты главным образом пассивным резонатором.

Резонансные колебания в трубе создаются при наибольшем движении воздуха у её отверстий. Другими словами, проводимость в органной трубе должна достигать своего максимума у прорези. Отсюда следует, что резонансные колебания и трубе с открытым длинным концом возникают на частотах, при которых в длине трубы укладывается целое число полуволн звуковых колебаний. Если обозначить основную частоту как f 1 , то более высокие резонансные частоты будут 2f 1 , 3f 1 и т.д. (В действительности, как уже было указано, высшие резонансные частоты всегда немного превышают эти значения.)

В трубе с закрытым или заглушенным дальним конном резонансные колебания возникают на частотах, при которых в длине трубы укладывается нечётное число четвертей длины волны. Поэтому для звучания на той же самой ноте закрытая труба может быть вдвое короче открытой, и её резонансные частоты будут f 1 , 3f 1 , 5f 1 и т.д.

Результаты влияния изменения давления нагнетаеого воздуха на звук в обычной органной трубе. Римскими цифрами обозначены первые несколько обертонов. Главный режим трубы (в цвете) охватывает диапазон хорошо сбалансированного нормального звучания при нормальном давлении. При увеличении давления звучание трубы переходит на второй обертон; при понижении давления создается ослабленный второй обертон.

Теперь вернёмся к воздушной струе в органной трубе. Мы видим, что волновые возмущения высокой частоты постепенно затухают по мере увеличения ширины струи. Вследствие этого конец струи у верхней губы колеблется почти по синусоиде на основной частоте звучания трубы и почти независимо от более высоких гармоник колебаний акустического поля у прорези трубы. Однако синусоидальное движение струи не создаст такого же движения воздушного потока в трубе, поскольку поток «насыщается» за счёт того, что при крайнем отклонении в любую сторону он полностью течёт либо с внутренней, либо с внешней стороны верхней губы. Кроме того, губа обычно несколько смещена и разрезает поток не точно по его центральной плоскости, так что насыщение оказывается несимметричным. Поэтому колебание потока в трубе имеет полный набор гармоник основной частоты со строго определённым соотношением частот и фаз, а относительные амплитуды этих высокочастотных гармоник быстро возрастают с увеличением амплитуды отклонения воздушной струи.

В обычной органной трубе величина отклонения струи в прорези соизмерима с шириной струи у верхней губы. В результате в воздушном потоке создаётся большое число обертонов. Если бы губа разделяла струю строго симметрично, чётные обертоны в звучании отсутствовали бы. Поэтому обычно губе придаётся некоторое смешение, чтобы сохранить все обертоны.

Как и следовало ожидать, открытая и закрытая трубы создают звук разного качества. Частоты обертонов, создаваемых струёй, кратны основной частоте колебаний струи. Столб воздуха в трубе будет сильно резонировать на определённый обертон только при большой акустической проводимости трубы. При этом будет отмечаться резкое увеличение амплитуды на частоте, близкой к частоте обертона. Поэтому в закрытой трубе, где создаются лишь обертоны с нечётными номерами резонансной частоты, происходит подавление всех других обертонов. В результате получается характерный «глухой» звук, в котором чётные обертоны слабы, хотя и не отсутствуют полностью. Напротив, а открытой трубе получается более «светлый» звук, поскольку он сохраняет все обертоны, производные от основной частоты.

Резонансные свойства трубы в большой степени зависят от потерь энергии. Эти потери бывают двух типов: потери на внутреннее трение и теплоотдачу и потери на излучение через прорезь и открытый конец трубы. Потери первого типа более значительны в узких трубах и при низкой частоте колебаний. Для широких труб и при высокой частоте колебаний существенными являются потери второго типа.

Влияние места расположения губы на создание обертонов свидетельствует о целесообразности смещения губы. Если бы губа разделяла струю строго по центральной плоскости, в трубе создавался бы только звук основной частоты (I) и третий обертон (III). При смещении губы, как показано пунктирной линией, возникают второй и четвёртый обертоны, значительно обогащающие качество звука.

Отсюда следует, что при данной длине трубы, а следовательно, и определённой основной частоте широкие трубы могут служить хорошими резонаторами только для основного тона и ближайших нескольких обертонов, образующих приглушенный «флейтоподобный» звук. Узкие трубы служат хорошими резонаторами для широкого диапазона обертонов, и поскольку излучение на высоких частотах происходит более интенсивно, чем на низких, то образуется высокий «струнный» звук. Между этими двумя звучаниями находится звонкий сочный звук, стать характерный для хорошего органа, который создаётся так называемыми принципалами или диапазонами.

Кроме того, в большом органе могут быть ряды труб с коническим корпусом, перфорированной заглушкой или иными разновидностями геометрической формы. Такие конструкции предназначены для модификации резонансных частот трубы, а иногда для увеличения диапазона высокочастотных обертонов с целью получения тембра особой звуковой окраски. Выбор материала, из которого изготавливается труба, не имеет большого значения.

Существует большое число возможных видов колебаний воздуха в трубе, и это в ещё большей степени усложняет акустические свойства трубы. Например, при увеличении давления воздуха в открытой трубе до такой степени, что в струе будет как раз создаваться первый обертон f 1 одной четверти длины основной волны, точка на спирали проводимости, соответствующая этому обертону, перейдёт на её правую половину и струя перестанет создавать обертон данной частоты. В то же время частота второго обертона 2f 1 соответствует полуволне в струе, и он может быть устойчивым. Поэтому звучание трубы перейдёт на этот второй обертон, почти на целую октаву выше первого, причём точная частота колебаний будет зависеть от резонансной частоты трубы и давления нагнетания воздуха.

Дальнейшее увеличение давления нагнетания может привести к образованию следующего обертона 3f 1 при условии, что «подрез» губы не слишком велик. С другой стороны, часто бывает, что низкое давление, недостаточное для образования основного тона, постепенно создаёт один из обертонов на втором витке спирали проводимости. Подобные звуки, создаваемые при излишке или недостатке давления, представляют интерес для лабораторных исследований, но в самих органах применяются крайне редко, лишь для достижения какого-то особого эффекта.


Вид стоячей волны при резонансе в трубах с открытым и закрытым верхним концом. Ширина каждой цветной линии соответствует амплитуде колебаний в различных частях трубы. Стрелками указано направление движения воздуха во время одной половины колебательного цикла; во второй половине цикла направление движения меняется на обратное. Римскими цифрами обозначены номера гармоник. Для открытой трубы резонансными являются все гармоники основной частоты. Закрытая труба должна быть вдвое короче для создании той же ноты, но для нее резонансными являются только нечетные гармоники. Сложная геометрия «ротика» трубы несколько искажает конфигурацию волн ближе к нижнему концу трубы, не меняя их « основного» характера.

После того как мастер при изготовлении органа сделал одну трубу, обладающую необходимым звучанием, основная и наиболее трудная его задача – создать весь ряд труб соответствующей громкости и гармоничности звучании по всему музыкальному диапазону клавиатуры. Этого нельзя достичь простым набором труб одинаковой геометрии, различающихся только своими размерами, поскольку у таких труб потери энергии от трения и излучения будут по-разному влиять на колебания различной частоты. Чтобы обеспечить постоянство акустических свойств по всему диапазону, необходимо варьировать целым рядом параметров. Диаметр трубы меняется при изменении её длины и зависит от неё как степень с показателем k, где k меньше 1. Поэтому длинные басовые трубы делают более узкими. Расчётная величина k составляет 5/6, или 0,83, но с учётом психофизических особенностей человеческого слуха она должна быть уменьшена до 0,75. Это значение kочень близко к тому, которое эмпирически определили великие мастера органов XVII и XVIII вв.

В заключение рассмотрим вопрос, важный с точки зрения игры на органе: каким образом осуществляется управление звучанием множества труб в большом органе. Основной механизм этого управления прост и напоминает ряды и колонки матрицы. Трубы, располагаемые по регистрам, соответствуют рядам матрицы. Все трубы одного регистра обладают одним тембром, и каждая труба соответствует одной ноте на ручной или ножной клавиатуре. Подача воздуха к трубам каждого регистра регулируется специальным рычагом, на котором указано название регистра, а подача воздуха непосредственно к трубам, связанным с данной нотой н составляющим колонку матрицы, регулируется соответствующей клавишей на клавиатуре. Труба будет звучать лишь в том случае, если передвинут рычажок регистра, в котором она находится, и нажата нужная клавиша.

Размещение органных труб напоминает ряды и колонки матрицы. На этой упрощённой схеме каждый ряд, именуемый регистром, состоит из однотипных труб, каждая из которых производит одну ноту (верхняя часть схемы). Каждая колонка, связанная с одной нотой на клавиатуре (нижняя часть схемы), включает трубы разных типов (левая часть схемы). Рычажком на консоли (правая часть схемы) обеспечивается доступ воздуха ко всем трубам регистра, а нажатием клавиши на клавиатуре воздух нагнетается во все трубы данной ноты. Доступ воздуха в трубу возможен только при одновременном включении ряда и колонки.

В наше время можно применять самые различные способы осуществления подобной схемы с использованием цифровых логических устройств и электрически управляемых клапанов на каждой трубе. На старых органах использовались простые механические рычажки и пластинчатые клапаны для подачи воздуха в клавишные каналы и механические ползуны с отверстиями для управления поступлением воздуха к целому регистру. Эта простая и надёжная механическая система, помимо своих конструктивных достоинств, позволяла органисту самому регулировать скорость открытия всех клапанов и как бы делала ему более близким этот уж слишком механический музыкальный инструмент.

В XIX в начале XX в. строились большие органы со всевозможными электромеханическими и электропневматическим устройствами, но в последнее время предпочтение опять отдаётся механическим передачам от клавиш и педалей, а сложные электронные устройства используются для одновременного включения сочетаний регистров во время игры на органе. Например, самый большой орган в мире с механической передачей был установлен в концертном зале Сиднейского оперного театра в 1979 г. В нем 10500 труб в 205 регистрах, распределённых между пятью ручными и одной ножной клавиатурами. Клавишное управление осуществляется механическим способом, но оно дублируется электрической передачей, к которой можно подключаться. Благодаря этому исполнение органиста может быть записано в кодированной цифровой форме, которую затем можно использовать для автоматического воспроизведения на органе первоначального исполнения. Управление регистрами и их сочетаниями осуществляется с помощью электрических или электропневматических устройств и микропроцессоров с памятью, что позволяет широко варьировать управляющую программу. Таким образом, великолепное богатое звучание величественного органа создаётся сочетанием самых передовых достижений современной техники и традиционных приёмов и принципов, которые на протяжении многих столетий использовались мастерами прошлого.

ОРГАН, клавишно-духовой музыкальный инструмент, самый большой и сложный из существующих инструментов. Огромный современный орган состоит как бы из трех и более органов, причем исполнитель может управлять одновременно всеми. Каждый из органов, входящих в состав такого «большого органа», имеет свои регистры (наборы труб) и свою клавиатуру (мануал). Трубы, выстроенные в ряды, располагаются во внутренних помещениях (камерах) органа; часть труб может быть видна, но в принципе все трубы скрыты за фасадом (проспектом), состоящим частично из декоративных труб. Органист сидит за т.н. шпильтишем (кафедрой), перед ним – клавиатуры (мануалы) органа, расположенные террасами одна над другой, а под ногами – педальная клавиатура.

Каждый из органов, входящих в «большой орган», имеет свое назначение и название; среди наиболее распространенных – «главный» (нем. Hauptwerk), «верхний», или «оберверк» (нем. Oberwerk), «рюкпозитив» (Rückpositiv), а также набор педальных регистров. «Главный» орган – самый большой и содержащий основные регистры инструмента. «Рюкпозитив» подобен «главному», но меньше и звучит мягче, а также содержит некоторые особые солирующие регистры. «Верхний» орган добавляет в ансамбль новые солирующие и звукоподражательные тембры; с педалью связаны трубы, издающие низкие звуки для усиления басовых партий.

Трубы некоторых из названных органов, особенно «верхнего» и «рюкпозитива», помещаются внутри полузакрытых жалюзи-камер, которые могут закрываться или открываться с помощью т.н. швеллера, в результате чего создаются эффекты crescendo и diminuendo, недоступные на органе без этого механизма.

В современных органах воздух нагнетается в трубы с помощью электромотора; через деревянные воздухопроводы воздух из мехов поступает в виндлады – систему деревянных ящиков с отверстиями в верхней крышке. В этих отверстиях укреплены своими «ножками» органные трубы. Из виндлад воздух под давлением поступает в ту или иную трубу.

Поскольку каждая труба в состоянии воспроизвести звук одной высоты и одного тембра, для стандартного мануала объемом в пять октав необходим набор как минимум из 61 трубы. Вообще же в органе может быть от нескольких сотен до многих тысяч труб. Группа труб, производящих звуки одного тембра, называется регистром. Когда органист включает регистр на шпильтише (с помощью кнопки или рычага, расположенного сбоку от мануалов или над ними), открывается доступ воздуха ко всем трубам данного регистра. Таким образом исполнитель может выбрать любой нужный ему регистр или любую комбинацию регистров.

Существуют различные типы труб, создающих многообразие звуковых эффектов. Трубы изготавливаются из жести, свинца , меди и разных сплавов (преимущественно свинца и олова), в некоторых случаях применяется и дерево . Длина труб может быть от 9,8 м до 2,54 см и меньше; диаметр варьируется в зависимости от высоты и тембра звука. Трубы органа разделяются на две группы по способу звукоизвлечения (лабиальные и язычковые) и на четыре группы по тембрам. В лабиальных трубах звук образуется в результате удара воздушной струи о нижнюю и верхнюю губу «ротика» (лабиума) – разреза в нижней части трубы; в язычковых трубах источником звука является вибрирующий под напором воздушной струи металлический язычок. Основные семейства регистров (тембров) – принципалы, флейты , гамбы и язычковые. Принципалы – фундамент всего органного звучания; флейтовые регистры звучат спокойней, мягче и до некоторой степени напоминают по тембру оркестровые флейты; гамбы (струнные) пронзительнее и острее, чем флейты; тембр язычковых – металлический, имитирующий тембры оркестровых духовых инструментов. Некоторые органы, особенно театральные, имеют также ударные тембры, например, имитирующие тарелки и барабан . Наконец, многие регистры строятся так, что их трубы дают не основной звук, а его транспозицию на октаву выше или ниже, а в случае т.н. микстур и аликвот – даже не один звук, а также обертоны к основному тону (аликвоты воспроизводят один обертон, микстуры – до семи обертонов).

Орган – древний инструмент. Его отдаленными предшественниками были, по-видимому, волынка и флейта Пана. В 3 в. до н.э. появился водяной орган – гидравлос; его изобретение приписывается мастеру Ктесибию из Александрии. Гидравлос был мощным инструментом, в котором необходимое давление воздуха, поступавшего в трубы, поддерживалось столбом воды. Гидравлос использовался греками и римлянами на ипподромах, в цирках, а также для сопровождения языческих мистерий. Звук гидравлоса был необычайно сильным и пронзительным. В первые века христианства водяной насос был заменен воздушными мехами, что позволило увеличить размеры труб и их количество в органе.

Уже в середине 5 в. органы строились в испанских церквах, но, поскольку инструмент по-прежнему звучал очень громко, его использовали только в дни больших праздников. К 11 в. большие органы строились повсюду в Европе; необычайными размерами был известен, в частности, орган, построенный в 980 в Уинчестере (Англия). Постепенно клавиши заменили неуклюжие большие «пластины»; диапазон инструмента стал шире, регистры – разнообразнее. В это же время вошли в широкое употребление маленький переносной орган – портатив и миниатюрный стационарный орган – позитив.

17–18 вв. – «золотой век» органостроения и органного исполнительства. Органы этого времени отличались красотой и разнообразием звучания; исключительная тембровая ясность, прозрачность делала их превосходным инструментами для исполнения полифонической музыки. Почти все великие органные композиторы писали для «барочного органа», который имел большее распространение, нежели органы предшествующих и последующих периодов. Романтизм 19 в., с его стремлением к экспрессивному оркестровому звучанию оказал сомнительное влияние на органостроение и органную музыку; мастера пытались создать инструменты, являющие собой «оркестр для одного исполнителя», в результате же дело свелось к слабой имитации оркестра. Вместе с тем в 19 и 20 вв. в органе появилось много новых тембров, а также были сделаны существенные усовершенствования в конструкции инструмента. Тенденция к созданию все более крупных органов достигла кульминации в огромном, насчитывающем 33 112 трубы, органе в Атлантик-Сити (шт. Нью-Джерси). Этот инструмент имеет две кафедры, причем на одной из них – семь клавиатур. Несмотря на это, в 20 в. органисты и органостроители осознали необходимость возвращения к более простым и удобным типам инструмента.