Как устроен орган aslan wrote in May 12th, 2017

17 июня 1981 года его клавиш впервые коснулась рука музыканта — выдающегося органиста Гарри Гродберга, который исполнил для томичей токкаты, прелюдии, фантазии и фуги Баха.

С тех пор десятки известных органистов давали концерты в Томске, а немецкие органные мастера не переставали удивляться, как в городе, где разница температур зимой и летом составляет 80 градусов, инструмент все еще играет.


Дитя ГДР

Орган Томской филармонии родился в 1981 году в восточно-германском городе Франкфурт-на-Одере, на органостроительной фирме «W.Sauer Orgelbau».

В обычном рабочем темпе постройка органа занимает около года, и этот процесс включает несколько этапов. Сначала мастера осматривают концертный зал, определяют его акустические характеристики и составляют проект будущего инструмента. Затем специалисты возвращаются на родную фабрику, изготавливают отдельные элементы органа и собирают из них цельный инструмент. В монтажном цехе фабрики его впервые апробируют и исправляют недочеты. Если орган звучит так, как надо, его снова разбирают по частям и отправляют заказчику.

В Томске на все процедуры установки потребовалось лишь полгода — благодаря тому, что процесс прошел без накладок, недочетов и прочих тормозящих факторов. В январе 1981-го специалисты «Sauer» впервые приехали в Томск, а в июне того же года орган уже давал концерты.

Внутренняя композиция

По меркам специалистов, томский орган можно назвать средним по весу и размерам — десятитонный инструмент вмещает в себя около двух тысяч труб разной длины и формы. Как и пятьсот лет назад, их делают вручную. Деревянные трубы, как правило, изготавливают в форме параллелепипеда. Формы металлических труб могут быть более замысловатыми: цилиндрическими, обратноконическими и даже комбинированными. Металлические трубы делают из сплава олова и свинца в разных пропорциях, а для деревянных обычно используют сосну.

Именно эти характеристики — длина, форма и материал — влияют на тембр звучания отдельной трубы.

Трубы внутри органа стоят рядами: от самой высокой к самой низкой. Каждый ряд труб может играть по отдельности, а можно их объединить. Сбоку от клавиатуры на вертикальных панелях органа установлены кнопки, нажимая на которые, органист управляет этим процессом. Все трубы томского органа — звучащие, и лишь одна из них с лицевой стороны инструмента создана в декоративных целях и не издает никаких звуков.

С обратной стороны орган похож на трехэтажный готический замок. На первом этаже этого замка располагается механическая часть инструмента, которая через систему тяг передает работу пальцев органиста к трубам. На втором этаже установлены трубы, которые связаны с клавишами нижней клавиатуры, а на третьем этаже — трубы верхней клавиатуры.

Томский орган обладает механической системой соединения клавиш и труб, а это значит, что нажатие на клавишу и появление звука происходит практически мгновенно, без всякого запаздывания.

Над исполнительской кафедрой располагаются жалюзи, или по-другому швеллер, которые скрывают от зрителя второй этаж органных труб. С помощью специальной педали органист управляет положением жалюзи и тем самым влияет на силу звука.

Заботливая рука мастера

Орган, как и любой другой музыкальный инструмент, очень зависим от климата, а сибирская погода создает немало проблем по уходу за ним. Внутри инструмента установлены специальные кондиционеры, датчики и увлажнители, которые поддерживают определенную температуру и влажность воздуха. Чем холоднее и суше воздух, тем короче становятся трубы органа, и наоборот — при теплом и влажном воздухе трубы удлиняются. Поэтому музыкальному инструменту требуется постоянный контроль.

Уход за томским органом обеспечивают всего два человека — органист Дмитрий Ушаков и его помощница Екатерина Мастеница.

Главным средством борьбы с пылью внутри органа является обычный советский пылесос. Для его поиска была организована целая акция — искали именно такой, который бы обладал системой выдува, потому что пыль из органа в обход всех трубочек проще выдувать на сцену и уже потом собирать пылесосом.

— Грязь в органе нужно убирать там, где она есть и когда она мешает, — говорит Дмитрий Ушаков. — Если сейчас мы решим убрать из органа всю пыль, нам придется заново полностью его настраивать, и вся эта процедура займет около месяца, а у нас концерты.

Чаще всего чистке подвергаются фасадные трубы — они на виду, поэтому на них часто остаются отпечатки пальцев любопытных. Смесь для чистки фасадных элементов Дмитрий готовит сам, из нашатырного спирта и зубного порошка.

Реконструкция звука

Капитальная чистка и настройка органа производится раз в год: обычно летом, когда проходит относительно немного концертов, и на улице не холодно. Но небольшая настройка звука требуется перед каждым концертом. К каждому виду органных труб у настройщика особый подход. Некоторым достаточно закрыть колпачок, другим подкрутить ролик, а для самых маленьких трубочек используют специальный инструмент — штиммхорн.

Настроить орган в одиночку не получится. Один человек должен нажимать на клавиши, а другой регулировать трубы, находясь внутри инструмента. К тому же, человек, нажимающий на клавиши, контролирует процесс настройки.

Первый капитальный ремонт томский орган пережил сравнительно давно, 13 лет назад, после реставрации органного зала и извлечения органа из специального саркофага, в котором он провел 7 лет. В Томск были приглашены специалисты фирмы «Sauer», которые и провели осмотр инструмента. Тогда помимо внутреннего обновления, орган сменил цвет фасада и обзавелся декоративными решетками. А в 2012 году у органа наконец появились «хозяева» — штатные органисты Дмитрий Ушаков и Мария Блажевич.

Жми на кнопку, чтобы подписаться на "Как это сделано"!

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите Аслану ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта Как это сделано

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках, в ютюбе и инстаграме , где будут выкладываться самое интересное из сообщества, плюс видео о том, как это сделано, устроено и работает.

Жми на иконку и подписывайся!

Когда неприметная дверь, окрашенная в бежевый цвет, открылась, взгляд выхватил из темноты лишь несколько деревянных ступенек. Сразу за дверью ввысь уходит мощный деревянный короб, похожий на вентиляционный. «Осторожнее, это органная труба, 32 фута, басовый флейтовый регистр, – предупредила моя провожатая. – Подождите, я включу свет». Я терпеливо дожидаюсь, предвкушая одну из самых интересных в моей жизни экскурсий. Передо мной вход в орган. Это единственный музыкальный инструмент, внутрь которого можно зайти

Органу больше ста лет. Он стоит в Большом зале Московской консерватории, том самом знаменитом зале, со стен которого на вас смотрят портреты Баха, Чайковского, Моцарта, Бетховена… Однако все, что открыто глазу зрителя, – это повернутый к залу тыльной стороной пульт органиста и немного вычурный деревянный «проспект» с вертикальными металлическими трубами. Наблюдая фасад органа, человек непосвященный так и не поймет, как и почему играет этот уникальный инструмент. Чтобы раскрыть его секреты, придется подойти к вопросу с другой стороны. В буквальном смысле.

Стать моим экскурсоводом любезно согласилась Наталья Владимировна Малина – хранитель органа, преподаватель, музыкант и органный мастер. «В органе можно передвигаться только лицом вперед», – строго объясняет мне она. К мистике и суевериям это требование не имеет ни малейшего отношения: просто, двигаясь назад или вбок, неопытный человек может наступить на одну из органных труб или задеть ее. А труб этих тысячи.

Главный принцип работы органа, отличающий его от большинства духовых инструментов: одна труба – одна нота. Древним предком органа можно считать флейту Пана. Этот инструмент, существовавший с незапамятных времен в разных уголках мира, представляет собой несколько связанных вместе полых тростинок разной длины. Если подуть под углом в устье самой короткой – раздастся тонкий высокий звук. Более длинные тростинки звучат ниже.

В отличие от обычной флейты менять высоту звучания отдельной трубки нельзя, поэтому флейта Пана может сыграть ровно столько нот, сколько в ней тростинок. Чтобы заставить инструмент издавать очень низкие звуки, нужно включить в его состав трубки большой длины и большого диаметра. Можно сделать много флейт Пана с трубками из разных материалов и разного диаметра, и тогда они будут выдувать одни и те же ноты с разными тембрами. Но играть на всех этих инструментах одновременно не получится – их нельзя удержать в руках, да и дыхания на гигантские «тростинки» не хватит. А вот если поставить все наши флейты вертикально, снабдить каждую отдельную трубку клапаном для впуска воздуха, придумать механизм, который дал бы нам возможность управлять всеми клапанами с клавиатуры и, наконец, создать конструкцию для нагнетания воздуха с его последующим распределением, у нас как раз и получится орган.

На старинном корабле

Трубы в органах делают из двух материалов: дерева и металла. Деревянные трубы, применяющиеся для извлечения басовых звуков, имеют квадратное сечение. Металлические трубы обычно меньшего размера, они цилиндрические или конические по форме и изготавливаются, как правило, из сплава олова и свинца. Если олова больше – труба звонче, если больше свинца, извлекаемый звук более глухой, «ватный».

Сплав олова и свинца очень мягкий – вот почему органные трубы легко поддаются деформации. Если большую металлическую трубу положить на бок, через некоторое время она под собственной тяжестью приобретет овальное сечение, что неизбежно скажется на ее способности извлекать звук. Передвигаясь внутри органа Большого зала Московской консерватории, я стараюсь касаться только деревянных частей. Если наступить на трубу или неловко схватиться за нее, у органного мастера появятся новые хлопоты: трубу придется «лечить» – выправлять, а то и запаивать.

Орган, внутри которого я нахожусь, – далеко не самый большой в мире и даже в России. По размерам и количеству труб он уступает органам Московского дома музыки, Кафедрального собора в Калининграде и Концертного зала им. Чайковского. Главные рекордсмены находятся за океаном: например, инструмент, установленный в Зале съездов города Атлантик-Сити (США), насчитывает более 33 000 труб. В органе Большого зала консерватории труб в десять раз меньше, «всего» 3136, но и это значительное количество невозможно разместить компактно на одной плоскости. Орган внутри – это несколько ярусов, на которых рядами установлены трубы. Для доступа органного мастера к трубам на каждом ярусе сделан узкий проход в виде дощатого помоста. Ярусы соединены между собой лестницами, в которых роль ступенек выполняют обычные перекладины. Внутри органа тесно, а передвижение между ярусами требует известной ловкости.

«Мой опыт говорит о том, – рассказывает Наталья Владимировна Малина, – что органному мастеру лучше всего быть худощавого сложения и иметь небольшой вес. Человеку с иными габаритами здесь сложно работать, не нанеся ущерба инструменту. Недавно электрик – грузный мужчина – менял лампочку над органом, оступился и выломал пару дощечек из дощатой кровли. Обошлось без жертв и увечий, но выпавшие дощечки повредили 30 органных труб».

Мысленно прикидывая, что в моем теле легко поместилась бы пара органных мастеров идеальных пропорций, я с опаской поглядываю на хлипкие с виду лестницы, ведущие на верхние ярусы. «Не беспокойтесь, – успокаивает меня Наталья Владимировна, – идите только вперед и повторяйте движения за мной. Конструкция крепкая, она вас выдержит».

Свистковые и язычковые

Мы поднимаемся на верхний ярус органа, откуда открывается недоступный простому посетителю консерватории вид на Большой зал с верхней точки. На сцене внизу, где только что окончилась репетиция струнного ансамбля, ходят маленькие человечки со скрипками и альтами. Наталья Владимировна показывает мне вблизи трубы испанских регистров. В отличие от прочих труб, они расположены не вертикально, а горизонтально. Образуя своего рода козырек над органом, они трубят прямо в зал. Создатель органа Большого зала Аристид Кавайе-Коль происходил из франко-испанского рода органных мастеров. Отсюда и пиренейские традиции в инструменте на Большой Никитской улице в Москве.

Кстати, об испанских регистрах и регистрах вообще. «Регистр» – одно из ключевых понятий в конструкции органа. Это ряд органных труб определенного диаметра, образующих хроматический звукоряд соответственно клавишам своей клавиатуры или ее части.

В зависимости от мензуры входящих в их состав труб (мензура – соотношение важнейших для характера и качества звучания параметров трубы) регистры дают звук с различной тембровой окраской. Увлекшись сравнениями с флейтой Пана, я чуть не упустил одну тонкость: дело в том, что далеко не все трубы органа (подобно тростинкам старинной флейты) являются аэрофонами. Аэрофон – это духовой инструмент, в котором звучание образуется в результате колебаний столба воздуха. К таким относятся флейта, труба, туба, валторна. А вот саксофон, гобой, губная гармошка состоят в группе идиофонов, то есть «самозвучащих». Здесь колеблется не воздух, а обтекаемый потоком воздуха язычок. Давление воздуха и сила упругости, противодействуя, заставляют язычок дрожать и распространять звуковые волны, которые усиливаются раструбом инструмента как резонатором.

В органе большинство труб – аэрофоны. Их называют лабиальными, или свистковыми. Идиофонные трубы составляют особую группу регистров и носят наименование язычковых.

Сколько рук у органиста?

Но как же музыканту удается заставить все эти тысячи труб – деревянных и металлических, свистковых и язычковых, открытых и закрытых – десятки или сотни регистров… звучать в нужное время? Чтобы это понять, спустимся на время с верхнего яруса органа и подойдем к кафедре, или пульту органиста. Непосвященного при виде этого устройства охватывает трепет как перед приборной доской современного авиалайнера. Несколько ручных клавиатур – мануалов (их может быть пять и даже семь!), одна ножная плюс еще какие-то таинственные педали. Еще есть множество вытяжных рычагов с надписями на рукоятках. Зачем все это?

Разумеется, у органиста всего две руки и играть одновременно на всех мануалах (в органе Большого зала их три, что тоже немало) он не сможет. Несколько ручных клавиатур нужны для того, чтобы механически и функционально разделить группы регистров, подобно тому как в компьютере один физический хард-драйв делится на несколько виртуальных. Так, например, первый мануал органа Большого зала управляет трубами группы (немецкий термин – Werk) регистров под названием Grand Orgue. В нее входит 14 регистров. Второй мануал (Positif Expressif) отвечает также за 14 регистров. Третья клавиатура – Rеcit expressif – 12 регистров. И наконец, 32-клавишная ножная клавиатура, или «педаль», работает с десятью басовыми регистрами.

Рассуждая с точки зрения профана, даже 14 регистров на одну клавиатуру – это как-то многовато. Ведь, нажав одну клавишу, органист способен заставить зазвучать сразу 14 труб в разных регистрах (а реально больше из-за регистров типа mixtura). А если нужно исполнить ноту всего лишь в одном регистре или в нескольких избранных? Для этой цели собственно и применяются вытяжные рычаги, расположенные справа и слева от мануалов. Вытянув рычаг с написанным на рукоятке названием регистра, музыкант открывает своего рода заслонку, открывающую доступ воздуха к трубам определенного регистра.

Итак, чтобы сыграть нужную ноту в нужном регистре, надо выбрать управляющий этим регистром мануал или педальную клавиатуру, вытащить соответствующий данному регистру рычаг и нажать на нужную клавишу.

Мощное дуновение

Финальная часть нашей экскурсии посвящена воздуху. Тому самому воздуху, который заставляет орган звучать. Вместе с Натальей Владимировной мы спускаемся на этаж ниже и оказываемся в просторном техническом помещении, где нет ничего от торжественного настроя Большого зала. Бетонный пол, белые стены, уходящие вверх опорные конструкции из старинного бруса, воздуховоды и электродвигатель. В первое десятилетие существования органа здесь в поте лица трудились качальщики-кальканты. Четыре здоровых мужика вставали в ряд, хватались обеими руками за палку, продетую в стальное кольцо на стойке, и попеременно, то одной, то другой ногой давили на рычаги, надувающие мех. Смена была рассчитана на два часа. Если концерт или репетиция длились дольше, уставших качальщиков сменяло свежее подкрепление.

Старые мехи, числом четыре, сохранились до сих пор. Как рассказывает Наталья Владимировна, по консерватории ходит легенда о том, что однажды труд качальщиков пытались заменить конской силой. Для этого якобы был даже создан специальный механизм. Однако вместе с воздухом в Большой зал поднимался запах конского навоза, и приходивший на репетицию основатель русской органной школы А.Ф. Гедике, взяв первый аккорд, недовольно водил носом и приговаривал: «Воняет!»

Правдива эта легенда или нет, но в 1913 году мускульную силу окончательно заменил электродвигатель. С помощью шкива он раскручивал вал, который в свою очередь через кривошипно-шатунный механизм приводил в движение мехи. Впоследствии и от этой схемы отказались, и сегодня воздух в орган закачивает электровентилятор.

В органе нагнетаемый воздух попадает в так называемые магазинные мехи, каждый из которых связан с одной из 12 виндлад. Виндлада – это имеющий вид деревянного короба резервуар для сжатого воздуха, на котором, собственно, и установлены ряды труб. На одной виндладе обычно помещается несколько регистров. Большие трубы, которым не хватает места на виндладе, установлены в стороне, и с виндладой их связывает воздухопровод в виде металлической трубки.

Виндлады органа Большого зала (конструкция «шлейфлада») разделены на две основные части. В нижней части с помощью магазинного меха поддерживается постоянное давление. Верхняя поделена воздухонепроницаемыми перегородками на так называемые тоновые каналы. В тоновый канал имеют выход все трубы разных регистров, управляемые одной клавишей мануала или педали. Каждый тоновый канал соединен с нижней частью виндлады отверстием, закрытым подпружиненным клапаном. При нажатии клавиши через трактуру движение передается клапану, он открывается и сжатый воздух попадает наверх, в тоновый канал. Все трубы, имеющие выход в этот канал, по идее должны начать звучать, но… этого, как правило, не происходит. Дело в том, что через всю верхнюю часть виндлады проходят так называемые шлейфы – заслонки с отверстиями, расположенные перпендикулярно тоновым каналам и имеющие два положения. В одном из них шлейфы полностью перекрывают все трубы данного регистра во всех тоновых каналах. В другом – регистр открыт, и его трубы начинают звучать, как только после нажатия клавиши воздух попадет в соответствующий тоновый канал. Управление шлейфами, как нетрудно догадаться, осуществляется рычагами на пульте через регистровую трактуру. Попросту говоря, клавиши разрешают звучать всем трубам в своих тоновых каналах, а шлейфы определяют избранных.

Благодарим руководство Московской государственной консерватории и Наталью Владимировну Малину за помощь в подготовке этой статьи

«Король инструментов» — именно так называют за огромные размеры, потрясающий диапазон звучания и уникальное богатство тембров духовой орган. Музыкальный инструмент с многовековой историей, переживший периоды огромной популярности и забвения, он служил как для религиозных служб, так и светских развлечений. Уникален орган и тем, что относится он к классу духовых инструментов, но при этом оснащен клавишами. Особенностью этого величественного инструмента является и то, что для игры на нем исполнитель должен виртуозно владеть не только руками, но и ногами.

Немного истории

Орган — музыкальный инструмент с богатой и древней историей. По мнению специалистов, прародителями этого великана можно считать сиринкс - простейшую тростниковую флейту Пана, древний восточный органчик из тростника шэн и вавилонскую волынку. Объединяет все эти непохожие друг на друга инструменты то, что для извлечения из них звука необходим более мощный, чем могут создать человеческие легкие, поток воздуха. Уже в древности был найден механизм, способный заменить дыхание человека - меха, подобные тем, что использовались для раздувания огня в кузнечном горне.

Древняя история

Уже во II веке до н. э. греческий умелец из Александрии Ctesibius (Ктесебий) изобрел и собрал гидравлический орган - гидравлос. В него воздух нагнетался водяным прессом, а не мехами. Благодаря таким изменениям, воздушный поток поступал значительно равномерней, и звук органа стал более красивым и ровным.

В первые века распространения христианства воздушные меха пришли на смену водяному насосу. Благодаря такой замене появилась возможность увеличить как количество, так и размер труб в органе.

Дальнейшая история органа, музыкального инструмента, довольно громкого и мало регулируемого, развивалась в таких европейских странах, как Испания, Италия, Франция и Германия.

Средние века

В середине V века н. э. органы строились во многих испанских церквях, но из-за очень громкого звучания использовались только в дни больших праздников. В 666 году папа Виталиан ввел этот инструмент в католическое богослужение. В VII-VIII веках орган претерпел несколько изменений и усовершенствований. Именно в это время в Византии создавались самые известные органы, однако и в Европе развивалось искусство их строительства.

В IX веке центром их производства стала Италия, откуда они выписывались даже во Францию. В дальнейшем и в Германии появились искусные мастера. К XI веку в большинстве европейских стран строились такие музыкальные гиганты. Однако стоит отметить, что современный инструмент значительно отличается от того, как выглядит орган средневековый. Созданные в средние века инструменты были значительно грубее более поздних. Так, размеры клавишей варьировались от 5 до 7 см, а расстояние между ними могло достигать 1,5 см. Для игры на подобном органе исполнитель использовал не пальцы, а кулаки, с силой ударяя ими по клавишам.

В XIV веке орган становится популярным и широко распространенным инструментом. Этому способствовало и усовершенствование этого инструмента: клавиши органа пришли на смену большим и неудобным пластинам, появилась басовая клавиатура для ног, оснащенная педалью, заметно разнообразней стали регистры, а диапазон - шире.

Эпоха Возрождения

В XV веке было увеличено количество трубок и уменьшены размеры клавиш. В этот же период стали популярны и широко распространены маленький переносной (органетто) и небольшой стационарный (позитив) орган.

Музыкальный инструмент к XVI веку становится все более сложным: клавиатура становится пятимануальной, причем диапазон каждого из мануалов мог доходить до пяти октав. Появились регистровые переключатели, позволившие значительно увеличить тембровые возможности. Каждая из клавиш могла соединяться с десятками, а иногда и с сотнями труб, издававшими звуки, одинаковые по высоте, но различающиеся по окраске.

Барокко

Многие исследователи называют XVII-XVIII века золотым периодом органного исполнительства и органостроения. Построенные в это время инструменты не только прекрасно звучали и могли имитировать звучание какого-либо одного инструмента, но и целых оркестровых групп и даже хоров. Кроме того, отличались они и прозрачностью и ясностью тембрового звучания, наиболее подходящего для исполнения полифонических произведений. Следует отметить, что большинство великих органных композиторов, таких, как Фрескобальди, Букстехуде, Свелинк, Пахельбель, Бах, писали свои произведения именно для «барочного органа».

«Романтический» период

Романтизм XIX века, по мнению многих исследователей, с его стремлением придать этому музыкальному инструменту богатое и мощное звучание, присущее симфоническому оркестру, оказали как на строительство органов, так и на органную музыку сомнительное, и даже отрицательное влияние. Мастера, и в первую очередь француз Аристид Кавайе-Коль, стремились создать инструменты способные стать оркестром для одного исполнителя. Появились инструменты, в которых звук органа стал необычайно мощным и масштабным, появились новые тембры, а также были сделаны различные конструктивные усовершенствования.

Новое время

XX век, особенно в своем начале, характеризуется стремлением к гигантизму, что отразилось и на органах и их масштабах. Однако подобные веяния быстро прошли, и среди исполнителей и специалистов по строительству органов возникло движение, пропагандировавшее возвращение к удобным и простым инструментам барочного типа, обладающих подлинным органным звучанием.

Внешний вид

То, что мы видим из зала, - внешняя сторона, и называется она фасадом органа. Глядя на него, сложно определиться с тем, что же это такое: чудесный механизм, уникальный музыкальный инструмент или произведение искусства? Описание органа, музыкального инструмента действительно внушительных размеров, может составить несколько томов. Постараемся в несколько строк сделать общие зарисовки. Прежде всего, фасад органа уникален и неповторим в каждом из залов или храмов. Общим является только то, что состоит он из труб, собранных в несколько групп. В каждой из таких групп трубы выстроены по высоте. За строгим или богато украшенным фасадом органа скрывается сложнейшая конструкция, благодаря которой исполнитель может подражать птичьим голосам или шуму морского прибоя, сымитировать высокое звучание флейты или целой оркестровой группы.

Как устроен?

Давайте рассмотрим устройство органа. Музыкальный инструмент очень сложный и может состоять из трех и более небольших органов, которыми исполнитель может управлять одновременно. Каждый из них обладает своим набором труб - регистров и мануала (клавиатуры). Управление этим сложнейшим механизмом осуществляется с исполнительского пульта, или как его еще называют - кафедры. Именно здесь расположены одна над другой клавиатуры (мануалы), на которых исполнитель играет руками, а внизу - огромные педали - клавиши для ног, позволяющие извлекать самые низкие басовые звуки. В органе может быть много тысяч труб, выстроенных в ряд, и находящихся во внутренних камерах, закрытые от глаз зрителя декоративным фасадом (проспектом).

Каждый из малых органов, входящих в «большой», имеет свое назначение и название. Наиболее распространены следующие:

  • главный - Haupwerk;
  • верхний - Oberwerk;
  • «рюкпозитив» - Rückpositiv.

Haupwerk - «главный орган» содержит основные регистры и является самым большим. Несколько меньше и с более мягким звучанием Rückpositiv, кроме того, он содержит и некоторые солирующие регистры. «Оберверк» - «верхний» вносит в ансамбль ряд звукоподражательных и солирующих тембров. Трубы «рюкпозитива» и «оберверка» могут устанавливаться в полузакрытые камеры-жалюзи, открывающиеся и закрывающиеся посредством особого швеллера. Благодаря чему могут создаваться такие эффекты, как постепенное усиление или ослабление звука.

Как вы помните, орган — музыкальный инструмент клавишный и духовой одновременно. Он состоит из множества труб, каждая из которых может издавать звук одного тембра, высота и силы.

Группа труб, издающая звуки одного тембра, объединяются в регистры, которые могут быть включены с пульта. Таким образом, исполнитель может выбрать нужный регистр или их комбинацию.

В современные органы воздух нагнетается посредством электрического мотора. Из мехов, через воздухопроводы, сделанные из дерева, воздух направляется в винлады - особую систему деревянных ящиков, в верхних крышках которых проделаны специальные отверстия. Именно в них укреплены органные трубы своими «ножками», в которые и поступает под давлением воздух из винлад.

Самый крупногабаритный вид музыкальных инструментов.

Энциклопедичный YouTube

    1 / 5

    ✪ Орган – король музыкальных инструментов

    ✪ Музыкальные инструменты (орган). Иоганн Себастьян Бах | Музыка 2 класс #25 | Инфоурок

    ✪ "Орган??? Музыкальный инструмент!!!", Баранова Т.А. МБДОУ №44

    ✪ Орган - Карточки для детей - Музыкальные Инструменты - Карточки Домана

    ✪ Клавесин – музыкальный инструмент прошлого, настоящего или будущего?

    Субтитры

Терминология

В самом деле, даже в неодушевленных предметах имеется такого рода способность (δύναμις), например, в [музыкальных] орудиях (ἐν τοῖς ὀργάνοις); про одну лиру говорят, что она способна [звучать], а про другую - что нет, если она неблагозвучна (μὴ εὔφωνος).

Тот род людей, который занимается инструментами, тратит на это весь свой труд, как, например, кифаред , или тот, кто демонстрирует своё ремесло на органе и других музыкальных инструментах (organo ceterisque musicae instrumentis).

Основы музыки, I.34

В русском языке слово «орга́н» по умолчанию обозначает духовой орган , но также используется по отношению к другим разновидностям, в том числе электронным аналоговым и цифровым, имитирующих звук органа. Органы различают:

  • по устройству - духовой, язычковый, электронный , аналоговый, цифровой;
  • по функциональной принадлежности - концертный, церковный, театральный , ярмарочный, салонный, учебный и др.;
  • по диспозиции - барочный, французский классический, романтический, симфонический, необарочный, современный;
  • по количеству мануалов - одномануальный, двух–, трёх– и т.д.

Слово «орган» также обычно уточняется ссылкой на органостроителя (например, «Орган Кавайе-Коля ») или торговую марку («Орган Хаммонда »). Некоторые разновидности органа имеют самостоятельные термины: античный гидравлос , портатив , позитив , регаль , фисгармония , шарманка и др.

История

Орган - один из древнейших музыкальных инструментов. Его история насчитывает несколько тысяч лет. Гуго Риман считал, что родоначальником органа является древняя вавилонская волынка (XIX век до н. э.): «Мех надувался через трубку, а с противоположного конца находился корпус с дудками, имеющими, без сомнения, язычки и по несколько отверстий» . Зародыш органа можно видеть также во флейте Пана , китайском шэне и других аналогичных инструментах. Считается, что орган (водяной орган, гидравлос) изобрёл грек Ктесибий , живший в Александрии Египетской в 296-228 гг. до н. э. Изображение похожего инструмента имеется на одной монете или жетоне времён Нерона . Органы больших размеров появились в IV веке , более или менее усовершенствованные органы - в VII и VIII веках . Папе Виталиану традиция приписывает введение органа в католическое богослужение . В VIII веке Византия славилась своими органами. Византийский император Константин V Копроним в 757 году подарил орган франкскому королю Пипину Короткому . Позже византийская императрица Ирина подарила его сыну - Карлу Великому орган, который звучал на коронации Карла. Орган считался в то время церемониальным атрибутом византийской, а затем и западноевропейской императорской власти .

Искусство строить органы развилось и в Италии , откуда в IX веке они выписывались во Францию . Позднее это искусство развилось в Германии . Повсеместное распространение в западной Европе орган получил начиная с XIV века . Средневековые органы, в сравнении с более поздними, были грубой работы; ручная клавиатура, например, состояла из клавиш шириной от 5 до 7 см, расстояние между клавишами достигало полутора см. Ударяли по клавишам не пальцами, как теперь, а кулаками. В XV веке были уменьшены клавиши и увеличено число труб.

Древнейшим образцом средневекового органа с относительно целостной механикой (трубы не сохранились) считается орган из Норрланды (церковный приход на острове Готланд в Швеции). Этот инструмент обычно датируется 1370-1400 гг., хотя у некоторых исследователей столь ранняя датировка вызывает сомнения . В настоящее время норрландский орган хранится в Национальном историческом музее в Стокгольме.

В XIX веке благодаря, прежде всего, деятельности французского органного мастера Аристида Кавайе-Колля , который задался целью конструировать органы именно таким образом, чтобы они своим мощным и богатым звучанием могли соперничать со звучанием целого симфонического оркестра, стали возникать инструменты ранее небывалого масштаба и мощности звучания, которые иногда называют симфоническими органами .

Устройство

Пульт

Пульт органа («шпильтиш» от нем. Spieltisch или органная кафедра ) - пульт со всеми необходимыми для органиста средствами, набор которых в каждом органе индивидуален, но у большинства есть общие: игровые - мануалы и педальная клавиатура (или просто «педаль» ) и тембровые - включатели регистров . Могут присутствовать также динамические - швеллеры , различные ножные рычаги или кнопки для включения копул и переключения комбинаций из банка памяти регистровых комбинаций и устройство для включения органа. За пультом, на скамье, органист сидит во время исполнения.

  • Копула - механизм, с помощью которого включенные регистры одного мануала могут звучать при игре на другом мануале или педали. В органах всегда есть копулы мануалов к педали и копулы к главному мануалу, также почти всегда есть копулы более слабых по звучанию мануалов к более сильным. Копула включается/выключается специальным ножным переключателем с фиксатором или кнопкой.
  • Швеллер - устройство, с помощью которого можно регулировать громкость данного мануала, открывая или закрывая створки жалюзи в ящике, в котором расположены трубы этого мануала.
  • Банк памяти регистровых комбинаций - устройство в виде кнопок, доступное только в органах с электрической регистровой трактурой, позволяющая запоминать регистровые комбинации, упрощая тем самым переключение регистров (смену общего тембра) во время исполнения.
  • Готовые регистровые комбинации - устройство в органах с пневматической регистровой трактурой, позволяющее включать готовый набор регистров (обычно p, mp, mf, f )
  • (от итал. Tutti - все) - кнопка включения всех регистров и копул органа.

Мануалы

Первые нотные памятники с органной педалью датированы серединой XV в. - это табулатура немецкого музыканта Адама из Илеборга (англ.) русск. (Adam Ileborgh, ок. 1448) и Буксхаймская органная книга (ок. 1470). Арнольт Шлик в «Spiegel der Orgelmacher» (1511) уже подробно пишет о педали и прилагает свои пьесы, где она весьма виртуозно применяется. Среди них особенно выделяется уникальная обработка антифона Ascendo ad Patrem meum для 10 голосов, из которых 4 поручено педали. Для исполнения этой пьесы требовалась, вероятно, какая-то специальная обувь, позволявшая нажимать одной ногой одновременно две клавиши, отстоящие на расстояние терции . В Италии ноты с использованием органной педали появляются намного позже - в токкатах Аннибале Падовано (1604) .

Регистры

Каждый ряд труб духового органа одинакового тембра составляет как бы отдельный инструмент и называется регистром . Каждая из выдвигаемых или вдвигаемых регистровых рукояток (или электронных выключателей), расположенных на пульте органа над клавиатурами или по бокам от пюпитра, включает или выключает соответствующий ряд органных труб. Если регистры выключены, при нажатии клавиши орган звучать не будет.

Каждая рукоятка соответствует регистру и имеет своё название с указанием высоты тона самой большой трубы этого регистра - футовость , традиционно обозначенную в футах в переводе на регистр Principal. Например, трубы регистра Gedackt - закрытые, и звучат октавой ниже, поэтому такая труба тона «до» субконтроктавы обозначается как 32", при фактической длине в 16". Язычковые регистры, высота звука которых зависит от массы самого язычка, а не от высоты раструба, также обозначаются в футах, по длине аналогичной по высоте звучания трубы регистра Principal .

Регистры по ряду объединяющих признаков группируются в семейства - принципалы , флейты, гамбы, аликвоты, микстуры и др. К основным относятся все 32-, 16-, 8-, 4-, 2-, 1-футовые регистры, к вспомогательным (или обертоновым) - аликвоты и микстуры. Каждая труба основного регистра воспроизводит только один звук неизменной высоты, силы и тембра. Аликвоты воспроизводят порядковый обертон к основному звуку, микстуры дают аккорд, который состоит из нескольких (обычно от 2 до дюжины, иногда до полусотни) обертонов к данному звуку.

Все регистры по устройству труб делятся на две группы:

  • Лабиальные - регистры с открытыми или закрытыми трубами без язычков. К этой группе принадлежат: флейты (широкомензурные регистры), принципалы и узкомензурные (нем. Streicher - «штрайхеры» или струнные), а также регистры призвуков - аликвоты и микстуры, в которых каждая нота имеет один или несколько (более слабых) обертоновых призвуков.
  • Язычковые - регистры, в трубах которых имеется язычок, при воздействии подаваемого воздуха на который возникает характерный звук, схожий по тембру, в зависимости от названия и особенности конструкции регистра, с некоторыми духовыми оркестровыми музыкальными инструментами: гобой , кларнет , фагот , труба , тромбон и др. Язычковые регистры могут располагаться не только вертикально, но и горизонтально - такие регистры составляют группу, которая от фр. chamade называется «шама́да».

Соединение различных видов регистров:

  • итал. Organo pleno - лабиальные и язычковые регистры вместе с микстурой;
  • фр. Grand jeu - лабиальные и язычковые без микстур;
  • фр. Plein jeu - лабиальные с микстурой.

Название регистра и величину труб композитор может обозначить в нотах над тем местом, где данный регистр должен быть применён. Выбор регистров для исполнения музыкального произведения называется регистровкой , а включенные регистры - регистровой комбинацией .

Так как регистры в разных органах разных стран и эпох не одинаковы, то в органной партии они обычно не обозначаются подробно: выписывают над тем или другим местом органной партии только мануал, обозначение труб с язычками или без них и величину труб, а остальное предоставляется на усмотрение исполнителя. Бо́льшая часть нотного органного репертуара не имеет никаких авторских обозначений, касающихся регистровки произведения, так у композиторов и органистов предыдущих эпох существовали свои традиции и искусство сочетания различных тембров органа передавалась устно из поколения в поколение.

Трубы

Трубы регистров звучат по-разному:

  • 8-футовые трубы звучат в соответствии с нотной записью;
  • 4- и 2-футовые звучат на одну и две октавы выше соответственно;
  • 16- и 32-футовые звучат на одну и две октавы ниже соответственно;
  • 64-футовые лабиальные трубы, встречающиеся в наиболее крупных органах мира, звучат на три октавы ниже записи, следовательно, те, что приводятся в действие клавишами педали и мануала ниже контроктавы, издают уже инфразвук ;
  • закрытые сверху лабиальные трубы звучат октавой ниже открытых.

Для настройки малых открытых лабиальных металлических труб органа используется штимгорн . С помощью этого молоткообразного инструмента завальцовывается или развальцовывается открытый конец трубы. Более крупные открытые трубы настраивают путём вырезания вертикального лоскута металла вблизи или непосредственно из открытого края трубы, который отгибается под тем или иным углом. Открытые деревянные трубы обычно имеют настроечное приспособление из дерева или металла, регулировка которой, позволяет настраивать трубу. Закрытые деревянные или металлические трубы настраиваются при помощи регулировки затычки или колпачка на верхнем конце трубы.

Фасадные трубы органа могут играть и декоративную роль. Если трубы не звучат, то их называют «декоративными» или «слепыми» (англ. dummy pipes ).

Трактура

Органная трактура - это система передаточных устройств, функционально соединяющая элементы управления на пульте органа с воздухозапорными устройствами органа. Игровая трактура передаёт движение клавиш мануалов и педали на клапаны конкретной трубы или группы труб в микстуре. Регистровая трактура обеспечивает включение или выключение целого регистра или группы регистров в ответ на нажатие тумблера или движение регистровой рукоятки.

Посредством регистровой трактуры также действует память органа - комбинации регистров, заранее скомпонованные и заложенные в устройство органа - готовые, фиксированные комбинации. Они могут называться как по сочетанию регистров - Pleno, Plein Jeu, Gran Jeu, Tutti, так и по силе звучания - Piano, Mezzopiano, Mezzoforte, Forte. Помимо готовых комбинаций, есть свободные комбинации, которые позволяют органисту выбирать, запоминать и изменять в памяти органа набор регистров по своему усмотрению. Функция памяти имеется не во всех органах. В органах с механической регистровой трактурой она отсутствует.

Механическая

Механическая трактура - эталонная, аутентичная и наиболее часто встречающаяся на данный момент, позволяющая исполнять наиболее широкий спектр произведений всех эпох; механическая трактура не даёт феномена «запаздывания» звука и позволяет досконально ощущать положение и поведение воздушного клапана, что даёт возможность наилучшего контроля инструмента органистом и достижения высокой техники исполнения . Клавиша мануала или педали при использовании механической трактуры соединена с воздушным клапаном системой лёгких деревянных или полимерных тяг (абстрактов), валиков и рычагов; изредка в больших старых органах применялась канатно-блоковая передача. Так как движение всех перечисленных элементов осуществляется только усилием органиста, существуют ограничения в размере и характере расположения звучащих элементов органа. В органах-гигантах (более 100 регистров) механическая трактура либо не используется, либо дополняется машиной Баркера (пневматическим усилителем, помогающим нажимать на клавиши; таковы французские органы начала XX века, например, Большого зала Московской консерватории и церкви Сен-Сюльпис в Париже). Механическая игровая обычно сочетается с механической регистровой трактурой и виндладой системы шлейфладе.

Пневматическая

Пневматическая трактура - наиболее распространённая в романтических органах - с конца XIX века до 20-х годов XX века; нажатие клавиши открывает клапан в управляющем воздуховоде, подача воздуха в который открывает пневматический клапан конкретной трубы (при использовании виндлад шлейфладе, встречается исключительно редко) либо целого ряда труб одного тона (виндлады кегельладе, характерные для пневматической трактуры). Позволяет строить огромные по набору регистров инструменты, так как не имеет силовых ограничений механической трактуры, однако имеет феномен «запаздывания» звука. Это делает зачастую невозможным исполнение технически сложных произведений, особенно во «влажной» церковной акустике, учитывая то, что время задержки звучания регистра зависит не только от удалённости от пульта органа, но и от его размера труб, наличия в трактуре реле, ускоряющих срабатывание механики за счёт освежения импульса, конструктивных особенностей трубы и используемого типа виндлады (практически всегда это - кегельладе, иногда - мембраненладе: работает на выброс воздуха, исключительно быстрое срабатывание). Кроме того, пневматическая трактура разобщает клавиатуру с воздушными клапанами, лишая органиста ощущения «обратной связи» и ухудшая контроль над инструментом. Пневматическая трактура органа хороша для исполнения сольных произведений периода романтизма , сложна для игры в ансамбле , и далеко не всегда подходит для музыки барокко и современности.

Электрическая

Электрическая трактура - широко используемая в XX веке трактура, с прямой передачей сигнала от клавиши к электромеханическому реле открытия-закрытия клапана посредством импульса постоянного тока в электрической цепи. В настоящее время всё чаще вытесняется механической. Это единственная трактура, не ставящая никаких ограничений по количеству и расположению регистров, а также размещению пульта органа на сцене в зале. Позволяет располагать группы регистров в разных концах зала, управлять органом с неограниченного количества дополнительных пультов, исполнять музыку для двух и трех органов на одном органе, а также ставить пульт в удобное место в оркестре , с которого будет хорошо видно дирижёра . Позволяет соединять несколько органов в общую систему, а также даёт уникальную возможность записи исполнения с последующим воспроизведением без участия органиста. Недостаток электрической трактуры, как и пневматической, - разрыв «обратной связи» пальцев органиста и воздушных клапанов. Кроме того, электрическая трактура может давать задержку звука за счёт времени срабатывания электрических реле клапанов, а также коммутатора-распределителя (в современных органах это устройство электронное и задержки не даёт; в инструментах первой половины и середины 20 века оно нередко было электромеханическим). Электромеханические реле при срабатывании часто дают дополнительные «металлические» звуки - щелчки и стук, которые, в отличие от аналогичных «деревянных» призвуков механической трактуры, совсем не украшают звучание произведения. В некоторых случаях электрический клапан получают самые большие трубы в остальном полностью механического органа (например, в новом инструменте фирмы «Hermann Eule» в Белгороде), что обусловлено необходимостью при большом расходе воздуха трубой сохранять площадь механического вентиля, и как следствие игровые усилия, в басу в приемлемых рамках. Шум может издавать и регистровая электрическая трактура при смене регистровых комбинаций. Пример акустически превосходного органа с механической игровой трактурой и при этом достаточно шумной регистровой трактурой - швейцарский орган фирмы «Kuhn» в Католическом соборе в Москве .

Другие

Крупнейшие органы мира

Крупнейший орган Европы - Большой орган кафедрального собора Св. Стефана в Пассау (Германия), построенный немецкой фирмой «Stenmayer & Co». Имеет 5 мануалов, 229 регистров, 17 774 трубы. Считается четвёртым по величине действующим органом в мире .

До недавнего времени крупнейшим в мире органом с полностью механической игровой трактурой (без применения электронного и пневматического управления) был орган собора св. Троицы в Лиепае (4 мануала, 131 регистр, более 7 тысяч труб), однако, в 1979 году в большом концертном зале центра исполнительских искусств Сиднейского оперного театра был установлен орган, имеющий 5 мануалов, 125 регистров и около 10 тысяч труб. Ныне он считается крупнейшим (с механической трактурой).

Главный орган Кафедрального собора в Калининграде (4 мануала, 90 регистров, около 6,5 тысяч труб ) является самым большим органом в России.

Экспериментальные органы

Органы оригинальной конструкции и настройки разрабатывались начиная со второй половины XVI века , как, например, архиорган итальянского теоретика музыки и композитора Н. Вичентино . Однако широкого распространения такие органы не получили. Ныне они выставляются как исторические артефакты в музеях музыкальных инструментов наряду с другими экспериментальными инструментами прошлого.

Источник: « В мире науки» , №3, 1983. Авторы: Невиль Х. Флетчер и Сусанна Туэйтс

Величественное звучание органа создаётся благодаря взаимодействию строго синхронизированных по фазе воздушной струи, проходящей через разрез в трубе, и воздушного столба, резонирующего в её полости.

Ни один музыкальный инструмент не может сравниться с органом по силе, тембру, диапазону, тональности и величественности звучания. Подобно многим музыкальным инструментам, устройство органа постоянно совершенствовалось благодаря усилиям многих поколений искусных мастеров, медленно накапливавших опыт и знания. К концу XVII в. орган в основном приобрёл свою современную форму. Два наиболее выдающихся физика XIX в. Герман фон Гельмгольц и лорд Рэлей выдвинули противоположные теории, объясняющие основной механизм образования звуков в органных трубах , но из-за отсутствия необходимых приборов н инструментов их спор так и не был решён. С появлением осциллографов н других современных приборов стало возможным детальное изучение механизма действия органа. Оказалось, что как теория Гельмгольца, так и теория Рэлея справедливы для определённых величин давления, под которым воздух нагнетается в органную трубу. Далее в статье будут изложены результаты последних исследований, которые во многом не совпадают с объяснением механизма действия органа, приводимым в учебниках.

Трубки, вырезанные из камыша или других растений с полым стеблем, были, вероятно, первыми духовыми музыкальными инструментами. Они издают звуки, если дуть поперёк открытого конца трубки, или дуть в трубку, вибрируя губами, или, защемив конец трубки, вдувать воздух, заставляя вибрировать её стенки. Развитие этих трёх видов простейших духовых инструментов привело к созданию современной флейты, трубы и кларнета, из которых музыкант может извлекать звуки в довольно большом диапазоне частот.

Параллельно создавались и такие инструменты, в которых каждая трубка предназначалась для звучания на одной определённой ноте. Простейший из таких инструментов – это свирель (или «флейта Пана»), которая обычно имеет около 20 трубок различной длины, закрытых с одного конца и издающих звуки, если дуть поперёк другого, открытого конца. Самым большим и сложным инструментом этого типа является орган, содержащий до 10000 труб, которыми органист управляет при помощи сложной системы механических передач. Орган ведёт своё происхождение из глубокой древности. Глиняные фигурки, изображавшие музыкантов, играющих на инструменте из многих труб, снабжённых мехами, были изготовлены в Александрии ещё во II в. до н.э. К X в. орган начинает использоваться в христианских церквях, и в Европе появляются написанные монахами трактаты об устройстве органов. По преданию, большой орган , построенный в Xв. для Винчестерского собора в Англии, имел 400 металлических труб, 26 мехов и две клавиатуры с 40 клавишами, где каждая клавиша управляла десятью трубами. На протяжении последующих столетий устройство органа совершенствовалось в механическом и музыкальном отношении, и уже в 1429 г. в Амьенском соборе был построен орган, имевший 2500 труб. В Германии к концу XVII в. органы уже приобрели свою современную форму.

Орган, установленный в 1979 г. в концертном зале Сиднейского оперного театра в Австралии, является самым большим и технически совершенным органом в мире. Спроектирован и построен Р. Шарпом. В нем имеется около 10500 труб, управляемых с помощью механической передачи пятью ручными и одной ножной клавиатурами. Орган может управляться автоматически магнитной лентой, на которой в цифровой форме ранее было записано исполнение музыканта.

Термины, применяемые для описания устройства органа , отражают их происхождение от трубчатых духовых инструментов, в которые воздух вдувался ртом. Трубы органа сверху открыты, а снизу имеют суженную конусообразную форму. Поперёк сплющенной части, над конусом, проходит «ротик» трубы (разрез). Внутри трубы помешен «язычок» (горизонтальное ребро), так что между ним и нижней «губой» образуется «лабиальное отверстие» (узкая щель). Воздух нагнетается в трубу большими мехами и поступает в её конусообразное основание под давлением от 500 до 1000 паскалей (от 5 до 10 см вод. ст.). Когда при нажатии соответствующей педали и клавиши воздух входит в трубу, он устремляется вверх, образуя при выходе из лабиальной щели широкую плоскую струю. Струя воздуха проходит поперёк прорези «ротика» и, ударяясь о верхнюю губу, взаимодействует с воздушным столбом в самой трубе; в результате создаются устойчивые колебания, которые и заставляют трубу «говорить». Сам по себе вопрос, каким образом происходит в трубе этот внезапный переход от молчания к звучанию, очень сложен и интересен, но в данной статье он не рассматривается. Разговор в основном будет идти о процессах, которые обеспечивают непрерывное звучание органных труб и создают их характерную тональность.

Органная труба возбуждается воздухом, поступающим в её нижний конец и образующим струю при прохождении через щель между нижней губой и язычком. В разрезе струя взаимодействует с воздушным столбом в трубе у верхней губы и проходит то внутри трубы, то вне её. В воздушном столбе создаются установившиеся колебания, заставляющие трубу звучать. Давление воздуха, изменяющееся по закону стоячей волны, показано цветной штриховкой. На верхний конец трубы насаживается съемная муфта или заглушка, которые позволяют при настройке слегка изменять длину воздушного столба.

Может показаться, что задача описания воздушной струи, порождающей и сохраняющей звучание органа, полностью относится к теории потоков жидкостей и газов. Выяснилось, однако, что весьма трудно теоретически рассмотреть движение даже постоянного, плавного, ламинарного потока, что же касается полностью турбулентной струи воздуха, которая движется в органной трубе, то её анализ невероятно сложен. К счастью, турбулентность, представляющая собой сложный вид движения воздуха, в действительности упрощает характер воздушного потока. Если бы этот поток был ламинарным, то взаимодействие струи воздуха с окружающей средой зависело бы от их вязкости. В нашем случае турбулентность заменяет вязкость в качестве определяющего фактора взаимодействия в прямой зависимости от ширины воздушного потока. При строительстве органа особое внимание уделяется тому, чтобы воздушные потоки в трубах были полностью турбулентны, что достигается с помощью мелких нарезок по кромке язычка. Как ни удивительно, в отличие от ламинарного турбулентный поток устойчив и может быть воспроизведён.

Полностью турбулентный поток постепенно смешивается с окружающим воздухом. Процесс расширения и замедления при этом сравнительно несложен. Кривая, изображающая изменение скорости потока в зависимости от расстояния от центральной плоскости его сечения, имеет вид перевёрнутой параболы, вершина которой соответствует максимальному значению скорости. Ширина потока возрастает пропорционально расстоянию от лабиальной щели. Кинетическая энергия потока остаётся неизменной, поэтому уменьшение его скорости пропорционально корню квадратному из расстояния от щели. Эта зависимость подтверждается как расчётами, так и результатами эксперимента (при учёте небольшой области перехода вблизи лабиальной щели).

В уже возбуждённой и звучащей органной трубе воздушный поток попадает из лабиальной щели в интенсивное звуковое поле в прорези трубы. Движение воздуха, связанное с генерацией звуков, направлено через прорезь и, следовательно, перпендикулярно плоскости потока. Пятьдесят лет назад Б. Брауну из колледжа Лондонского университета удалось сфотографировать ламинарный поток задымлённого воздуха в звуковом поле. На снимках было отмечено образование извилистых волн, увеличивающихся по мере их продвижения вдоль потока, пока последний не распадался на два ряда вихревых колец, вращающихся в противоположных направлениях. Упрошенная интерпретация этих и подобных им наблюдений привела к неверному описанию физических процессов в органных трубах, которое можно найти во многих учебниках.

Более плодотворный метод изучения действительного поведения воздушной струи в звуковом поле заключается в экспериментировании с отдельно взятой трубой, в которой звуковое поле создаётся с помощью репродуктора. В результате таких исследований, проведённых Дж. Колтманом в лаборатории компании Westinghouse Electric Corporation и группой с моим участием в Университете Новой Англии в Австралии, были разработаны основы современной теории физических процессов, происходящих в органных трубах. Фактически ещё Рэлей дал тщательное и почти полное математическое описание ламинарных потоков невязких сред. Поскольку обнаружилось, что турбулентность не усложняет, а упрощает физическую картину воздушной струн, оказалось возможным использовать метод Рэлея с небольшими изменениями для описания воздушных потоков, экспериментально полученных и исследованных Колтманом и нашей группой.

Если бы в трубе не было лабиальной щели, то можно было бы ожидать, что воздушная струя в виде полосы движущегося воздуха просто смещалась бы назад и вперёд вместе со всем остальным воздухом в прорези трубы под воздействием акустических колебаний. В действительности же при выходе струи из щели она эффективно стабилизируется самой щелью. Этот эффект можно сравнить с результатом наложения на общее колебательное движение воздуха в звуковом поле строго сбалансированного смешения, локализованного в плоскости горизонтального ребра. Это локализованное смешение, которое имеет ту же частоту и амплитуду, что и звуковое поле, и в результате создаёт у горизонтального ребра нулевое смешение струи, сохраняется в движущемся потоке воздуха и создаёт извилистую волну.

Пять труб разной конструкции производят звуки одинаковой высоты, но разного тембра. Вторая труба слева – это дульсиана, обладающая нежным, тонким звучанием, напоминающим звучание струнного инструмента. Третья труба – открытый диапазон, дающий светлый, звонкий звук, который наиболее характерен для органа. У четвертой трубы звук сильно приглушённой флейты. Пятая труба – Waldflote (« лесная флейта») с мягким звучанием. Деревянная труба слева закрыта заглушкой. Она имеет ту же основную частоту колебаний, что и другие трубы, но резонирует на нечётных обертонах, частоты которых в нечётное число раз больше основной частоты. Длина остальных труб не совсем одинакова, так как для получения одинаковой высоты тона производится «коррекция конца».

Как показал Рэлей для исследованного им типа струи и как мы всесторонне подтвердили для случая с расходящейся турбулентной струёй, волна распространяется вдоль потока со скоростью несколько меньшей половины скорости движения воздуха в центральной плоскости струи. При этом по мере движения вдоль потока амплитуда волны возрастает почти по экспоненте. Как правило, она увеличивается вдвое при перемещении волны на один миллиметр и её воздействие быстро становится преобладающим по отношению к простому возвратно-поступательному боковому перемещению, вызываемому звуковыми колебаниями.

Было установлено, что наибольшая скорость увеличения волны достигается в том случае, когда её длина вдоль потока в шесть раз превышает ширину потока в данной точке. С другой стороны, если длина волны оказывается меньше ширины потока, то амплитуда не увеличивается и волна может вообще исчезнуть. Поскольку воздушная струя расширяется и замедляет движение по мере удаления от щели, распространяться по длинным потокам с большой амплитудой могут только длинные волны, то есть низкочастотные колебания. Это обстоятельство окажется немаловажным при последующем рассмотрении создания гармонического звучания органных труб.

Рассмотрим теперь воздействие на воздушную струю звукового поля органной трубы. Нетрудно представить, что акустические волны звукового поля в прорези трубы заставляют кончик воздушной струи перемешаться поперёк верхней губы прорези, так что струя оказывается то внутри трубы, то вне её. Это напоминает картину, когда толкают уже раскачивающиеся качели. Воздушный столб в трубе уже колеблется, и, когда порывы воздуха входят в трубу синхронно с колебанием, они сохраняют силу колебаний, несмотря на различные потери энергии, связанные с распространением звука и трением воздуха о стенки трубы. Если же порывы воздуха не совпадают с колебаниями воздушного столба в трубе, они будут подавлять эти колебания и звук будет затухать.

Форма воздушной струи показана на рисунке в виде ряда последовательных кадров при выходе из лабиальной щели в движущееся акустическое поле, создаваемое в «ротике» трубы воздушным столбом, который резонирует внутри трубы. Периодическое смещение воздуха в разрезе ротика создаёт извилистую волну, движущуюся со скоростью вдвое меньшей скорости движения воздуха в центральной плоскости струи и увеличивающейся по экспоненте, пока её амплитуда не превысит ширину самой струи. Горизонтальные сечения показывают отрезки пути, которые волна в струе проходит за последовательные четверти периода колебаний Т . Секущие линии сближаются с уменьшением скорости струи. В органной трубе верхняя губа расположена в месте, указанном стрелкой. Воздушная струя попеременно выходит из трубы и входит в неё.

Измерение звукопроизводящих свойств воздушной струи можно осуществить, помещая в открытый конец трубы фетровые или пенопластовые клинья, препятствующие звучанию, и создавая звуковую волну небольшой амплитуды с помощью громкоговорителя. Отражаясь от противоположного конца трубы, звуковая волна взаимодействует у разреза «ротика» с воздушной струёй. Взаимодействие струи со стоячей волной внутри трубы измеряется с помощью переносного микрофона-тестера. Таким способом удается обнаружить, увеличивает или уменьшает воздушная струя энергию отраженной волны в нижней части трубы. Для того чтобы труба звучала, струя должна увеличивать энергию. Результаты измерения выражаются в величине акустической «проводимости», определяемой как отношение акустического потока на выходе из разреза « ротика» к звуковому давлению непосредственно за резрезом. Кривая значений проводимости при различных сочетаниях давления нагнетания воздуха и частоты колебаний имеет форму спирали, как показано на следующем рисунке.

Связь между возникновением акустических колебаний в прорези трубы и моментом поступления очередной порции воздушной струи на верхнюю губу прорези определяется отрезком времени, за который волна в воздушном потоке проходит расстояние от лабиальной щели до верхней губы. Мастера по изготовлению органов называют это расстояние «подрезом». Если «подрез» велик или давление (а следовательно, и скорость движения) воздуха низкое, то время движения будет большим. И наоборот, если «подрез» мал или давление воздуха высокое, то время движения будет небольшим.

Для того чтобы точно определить фазовое соотношение между колебаниями воздушного столба в трубе и поступлениями порций воздушной струи на внутреннюю кромку верхней губы, необходимо более подробно изучить характер воздействия этих пропорций на воздушный столб. Гельмгольц считал, что главным фактором здесь является объем воздушного потока, доставляемого струёй. Поэтому для того, чтобы порции струи сообщали как можно больше энергии колеблющемуся воздушному столбу, они должны поступать в тот момент, когда давление у внутренней части верхней губы достигает максимума.

Рэлей выдвигал другое положение. Он доказывал, что, поскольку прорезь находится сравнительно недалеко от открытого конца трубы, акустические волны у прорези, на которые воздействует воздушная струя, не могут создавать большое давление. Рэлей считал, что воздушный поток, поступая в трубу, фактически наталкивается на преграду и почти останавливается, что быстро создаёт в нём высокое давление, которое и оказывает воздействие на его движение в трубе. Поэтому, по мнению Рэлея, воздушная струя будет передавать максимальное количество энергии в том случае, если она будет поступать в трубу в момент, когда максимальным будет не давление, а сам поток акустических волн. Сдвиг между этими двумя максимумами составляет одну четверть периода колебаний воздушного столба в трубе. Если провести аналогию с качелями, то это различие выражается в толкании качелей, когда они находятся в верхней точке и обладают максимальной потенциальной энергией (по Гельмгольцу), и в момент, когда они находятся в самой нижней точке и обладают максимальной скоростью (по Рэлею).

Кривая акустической проводимости струи имеет форму спирали. Расстояние от начальной точки указывает величину проводимости, а угловое положение – сдвиг фаз между акустическим потоком на выходе из прорези и звуковым давлением за прорезью. Когда поток совпадает по фазе с давлением, значения проводимости лежат в правой половине спирали и происходит рассеяние энергии струи. Для того чтобы струя генерировала звук, значения проводимости должны находиться в левой половине спирали, что имеет место при компенсации или задержке по фазе движения струи по отношению к давлению за разрезом трубы. В этом случае длина отраженной волны выше длины падающей волны. Величина опорного угла зависитот того, какой из двух механизмов доминирует в возбуждении трубы: механизм Гельмгольца или механизм Рэлея. При проводимости, соответствующей верхней половине спирали, струя понижает собственную резонансную частоту трубы, а когда значение проводимости находится в нижней части спирали, повышает собственную резонансную частоту трубы.

График движения воздушного потока в трубе (пунктирная кривая) при данном отклонении струи несимметричен по отношению к нулевой величине отклонения, поскольку губа трубы устроена так, чтобы разрезать струю не по её центральной плоскости. Когда отклонение струи происходит по простой синусоиде с большой амплитудой (сплошная кривая черного цвета), воздушный поток, поступающий в трубу (цветная кривая), «насыщается» сначала у одной крайней точки отклонения струи, когда она полностью выходит из трубы. При ещё большей амплитуде происходит насыщение воздушного потока и у другой крайней точки отклонения, когда струя полностью входит в трубу. Смещение губы придает потоку асимметричную волновую форму, обертоны которой имеют частоты, кратные частоте отклоняющей волны.

На протяжении 80 лет задача оставалась нерешённой. Более того, новые исследования фактически не проводились. И лишь теперь она нашла удовлетворительное решение благодаря работам Л. Кремера и X. Лизинга из Института им. Генриха Герца в Зап. Берлине, С. Эллера из Военно-морской академии США, Колтмана и нашей группы. Коротко говоря, и Гельмгольц, и Рэлей оба были отчасти правы. Соотношение между двумя механизмами воздействия определяется давлением нагнетаемого воздуха и частотой звука, причём механизм Гельмгольца оказывается основным при низких давлениях и высоких частотах, а механизм Рэлея – при высоких давлениях и низких частотах. Для органных труб стандартной конструкции механизм Гельмгольца играет обычно более важную роль.

Колтман разработал простой и эффективный способ изучения свойств воздушной струи, который был несколько модифицирован и усовершенствован в нашей лаборатории. В основе этого метода лежит изучение воздушной струи у прорези органной трубы, когда дальний конец её закрыт фетровыми или пенопластовыми звукопоглощающими клиньями, не дающими трубе звучать. Затем из репродуктора, помещённого у дальнего конца, вниз по трубе подаётся звуковая волна, которая отражается от края прорези сначала при наличии нагнетаемой струи, а потом без неё. В обоих случаях падающая и отражённая волны взаимодействуют внутри трубы, создавая стоячую волну. Измеряя с помощью небольшого микрофона-зонда изменения в конфигурации волны при подаче воздушной струи, можно определить, увеличивает или уменьшает струя энергию отражённой волны.

В наших экспериментах фактически измерялась «акустическая проводимость» воздушной струи, которая определяется отношением акустического потока на выходе из прорези, создаваемого присутствием струи, к акустическому давлению непосредственно внутри прорези. Акустическая проводимость характеризуется величиной и фазовым углом, которые можно представить графически в виде функции частоты или давления нагнетания. Если представить график проводимости при независимом изменении частоты и давления, то кривая будет иметь форму спирали (см. рисунок). Расстояние от начальной точки спирали указывает величину проводимости, а угловое положение точки на спирали соответствует запаздыванию фазы извилистой волны, возникающему в струе под воздействием акустических колебаний в трубе. Запаздывание на одну длину волны соответствует 360° по окружности спирали. Вследствие особых свойств турбулентной струи оказалось, что при умножении величины проводимости на квадратный корень из величины давления все величины, измеренные для данной органной трубы, укладываются на одной и той же спирали.

Если давление остаётся постоянным, а частота поступающих звуковых волн растёт, то точки, указывающие величину проводимости, приближаются по спирали к её середине по часовой стрелке. При постоянной частоте и увеличении давления эти точки удаляются от середины в противоположном направлении.

Внутренний вид органа Сиднейского оперного театра. Видны некоторые трубы его 26 регистров. Большая часть труб сделана из металла, некоторые изготовлены из дерева. Длина звучащей части трубы удваивается через каждые 12 труб, а диаметр трубы удваивается примерно через каждые 16 труб. Многолетний опыт мастеров – создателей органов позволил им найти наилучшие пропорции, обеспечивающие устойчивый тембр звучания.

Когда точка величины проводимости находится в правой половине спирали, струя отбирает энергию у потока в трубе, и поэтому происходит потеря энергии. При положении точки в левой половине струя передаст энергию потоку и тем самым действует как генератор звуковых колебаний. При положении значения проводимости в верхней половине спирали струя понижает собственную резонансную частоту трубы, а когда эта точка находится в нижней половине, струя повышает собственную резонансную частоту трубы. Величина угла, характеризующего отставание по фазе, зависит от того, по какой схеме – Гельмгольца или Рэлея – осуществляется основное возбуждение трубы, а это, как было показано, определяется величинами давления и частоты. Однако этот угол, отсчитываемый от правой части горизонтальной оси (правая четверть), никогда не бывает значительно больше нуля.

Поскольку 360° по окружности спирали соответствует отставанию по фазе, равному длине и извилистой волны, распространяющейся вдоль воздушной струи, величины такого отставания от значительно меньших четверти длины волны до почти трёх четвёртых её длины будут лежать на спирали от центральной линии, то есть в той части, где струя действует как генератор звуковых колебаний. Мы также видели, что при постоянной частоте отставание по фазе является функцией давления нагнетаемого воздуха, от которой зависят как скорость самой струи, так и скорость распространения извилистой волны вдоль струи. Поскольку скорость такой волны составляет половину скорости струи, которая в свою очередь прямо пропорциональна корню квадратному из величины давления, изменение фазы струи на половину длины волны возможно лишь при значительном изменении давления. Теоретически давление может меняться в девятикратном размере, прежде чем труба перестаёт производить звучание на своей основной частоте, если другие условия не нарушаются. На практике, однако, труба начинает звучать на более высокой частоте до достижения указанного высшего предела изменения давления.

Следует отметить, что для восполнения потерь энергии в трубе и обеспечения устойчивости звука, несколько витков спирали может уйти далеко влево. Заставить трубу звучать может только ещё один такой виток, местоположение которого соответствует примерно трём полуволнам в струе. Так как проводимость струн в этой точке низка, продуцируемый звук слабее любого звука, соответствующего точке на внешнем витке спирали.

Форма спирали проводимости может ещё больше усложниться, если величина отклонения у верхней губы превышает ширину самой струи. При этом струя почти полностью выдувается из трубы и вдувается в неё обратно на каждом цикле перемещения, и количество энергии, которую она сообщает отражённой волне в трубе, перестаёт зависеть от дальнейшего увеличения амплитуды. Соответственно снижается и эффективность воздушной струн в режиме генерации акустических колебаний. В этом случае увеличение амплитуды отклонения струи приводит лишь к уменьшению спирали проводимости.

Снижение эффективности струи мри увеличении амплитуды отклонения сопровождается возрастанием потерь энергии в органной трубе. Колебания в трубе быстро устанавливаются на более низком уровне, при котором энергия струи точно компенсирует потери энергии в трубе. Интересно отметить, что в большинстве случаев потери энергии вследствие турбулентности и вязкости значительно превышают потери, связанные с рассеянием звуковых волн через прорезь и открытый коней трубы.

Разрез органной трубы диапазонного типа, на котором видно, что язычок имеет насечку для соэданияоднородного турбулентного движения струи воздуха. Труба изготовлена из «краплёного металла» – сплава с большим содержанием олова и добавкой свинца. При изготовлении листового материала из этого сплава на нём закрепляется характерный рисунок, который хорошо виден на фотографии.

Разумеется, действительное звучание трубы в органе не ограничено одной определённой частотой, но содержит и звуки более высокой частоты. Можно доказать, что эти обертоны являются точными гармониками основной частоты и отличаются от неё в целое число раз. При постоянных условиях воздухонагнетания форма звуковой волны на осциллографе остаётся совершенно одинаковой. Малейшее отклонение частоты гармоник от величины, строго кратной основной частоте, приводит к постепенному, но чётко видимому изменению формы волны.

Это явление представляет интерес, потому что резонансные колебания воздушного столба в органной трубе, как и в любой открытой трубе, устанавливаются на частотах, которые несколько отличаются от частот гармоник. Дело в том, что при увеличении частоты рабочая длина трубы становится немного меньше из-за изменения акустического потока у открытых концов трубы. Как будет показано, обертоны в органной трубе создаются за счёт взаимодействия воздушной струи и губы прорези, а сама труба служит для обертонов более высокой частоты главным образом пассивным резонатором.

Резонансные колебания в трубе создаются при наибольшем движении воздуха у её отверстий. Другими словами, проводимость в органной трубе должна достигать своего максимума у прорези. Отсюда следует, что резонансные колебания и трубе с открытым длинным концом возникают на частотах, при которых в длине трубы укладывается целое число полуволн звуковых колебаний. Если обозначить основную частоту как f 1 , то более высокие резонансные частоты будут 2f 1 , 3f 1 и т.д. (В действительности, как уже было указано, высшие резонансные частоты всегда немного превышают эти значения.)

В трубе с закрытым или заглушенным дальним конном резонансные колебания возникают на частотах, при которых в длине трубы укладывается нечётное число четвертей длины волны. Поэтому для звучания на той же самой ноте закрытая труба может быть вдвое короче открытой, и её резонансные частоты будут f 1 , 3f 1 , 5f 1 и т.д.

Результаты влияния изменения давления нагнетаеого воздуха на звук в обычной органной трубе. Римскими цифрами обозначены первые несколько обертонов. Главный режим трубы (в цвете) охватывает диапазон хорошо сбалансированного нормального звучания при нормальном давлении. При увеличении давления звучание трубы переходит на второй обертон; при понижении давления создается ослабленный второй обертон.

Теперь вернёмся к воздушной струе в органной трубе. Мы видим, что волновые возмущения высокой частоты постепенно затухают по мере увеличения ширины струи. Вследствие этого конец струи у верхней губы колеблется почти по синусоиде на основной частоте звучания трубы и почти независимо от более высоких гармоник колебаний акустического поля у прорези трубы. Однако синусоидальное движение струи не создаст такого же движения воздушного потока в трубе, поскольку поток «насыщается» за счёт того, что при крайнем отклонении в любую сторону он полностью течёт либо с внутренней, либо с внешней стороны верхней губы. Кроме того, губа обычно несколько смещена и разрезает поток не точно по его центральной плоскости, так что насыщение оказывается несимметричным. Поэтому колебание потока в трубе имеет полный набор гармоник основной частоты со строго определённым соотношением частот и фаз, а относительные амплитуды этих высокочастотных гармоник быстро возрастают с увеличением амплитуды отклонения воздушной струи.

В обычной органной трубе величина отклонения струи в прорези соизмерима с шириной струи у верхней губы. В результате в воздушном потоке создаётся большое число обертонов. Если бы губа разделяла струю строго симметрично, чётные обертоны в звучании отсутствовали бы. Поэтому обычно губе придаётся некоторое смешение, чтобы сохранить все обертоны.

Как и следовало ожидать, открытая и закрытая трубы создают звук разного качества. Частоты обертонов, создаваемых струёй, кратны основной частоте колебаний струи. Столб воздуха в трубе будет сильно резонировать на определённый обертон только при большой акустической проводимости трубы. При этом будет отмечаться резкое увеличение амплитуды на частоте, близкой к частоте обертона. Поэтому в закрытой трубе, где создаются лишь обертоны с нечётными номерами резонансной частоты, происходит подавление всех других обертонов. В результате получается характерный «глухой» звук, в котором чётные обертоны слабы, хотя и не отсутствуют полностью. Напротив, а открытой трубе получается более «светлый» звук, поскольку он сохраняет все обертоны, производные от основной частоты.

Резонансные свойства трубы в большой степени зависят от потерь энергии. Эти потери бывают двух типов: потери на внутреннее трение и теплоотдачу и потери на излучение через прорезь и открытый конец трубы. Потери первого типа более значительны в узких трубах и при низкой частоте колебаний. Для широких труб и при высокой частоте колебаний существенными являются потери второго типа.

Влияние места расположения губы на создание обертонов свидетельствует о целесообразности смещения губы. Если бы губа разделяла струю строго по центральной плоскости, в трубе создавался бы только звук основной частоты (I) и третий обертон (III). При смещении губы, как показано пунктирной линией, возникают второй и четвёртый обертоны, значительно обогащающие качество звука.

Отсюда следует, что при данной длине трубы, а следовательно, и определённой основной частоте широкие трубы могут служить хорошими резонаторами только для основного тона и ближайших нескольких обертонов, образующих приглушенный «флейтоподобный» звук. Узкие трубы служат хорошими резонаторами для широкого диапазона обертонов, и поскольку излучение на высоких частотах происходит более интенсивно, чем на низких, то образуется высокий «струнный» звук. Между этими двумя звучаниями находится звонкий сочный звук, стать характерный для хорошего органа, который создаётся так называемыми принципалами или диапазонами.

Кроме того, в большом органе могут быть ряды труб с коническим корпусом, перфорированной заглушкой или иными разновидностями геометрической формы. Такие конструкции предназначены для модификации резонансных частот трубы, а иногда для увеличения диапазона высокочастотных обертонов с целью получения тембра особой звуковой окраски. Выбор материала, из которого изготавливается труба, не имеет большого значения.

Существует большое число возможных видов колебаний воздуха в трубе, и это в ещё большей степени усложняет акустические свойства трубы. Например, при увеличении давления воздуха в открытой трубе до такой степени, что в струе будет как раз создаваться первый обертон f 1 одной четверти длины основной волны, точка на спирали проводимости, соответствующая этому обертону, перейдёт на её правую половину и струя перестанет создавать обертон данной частоты. В то же время частота второго обертона 2f 1 соответствует полуволне в струе, и он может быть устойчивым. Поэтому звучание трубы перейдёт на этот второй обертон, почти на целую октаву выше первого, причём точная частота колебаний будет зависеть от резонансной частоты трубы и давления нагнетания воздуха.

Дальнейшее увеличение давления нагнетания может привести к образованию следующего обертона 3f 1 при условии, что «подрез» губы не слишком велик. С другой стороны, часто бывает, что низкое давление, недостаточное для образования основного тона, постепенно создаёт один из обертонов на втором витке спирали проводимости. Подобные звуки, создаваемые при излишке или недостатке давления, представляют интерес для лабораторных исследований, но в самих органах применяются крайне редко, лишь для достижения какого-то особого эффекта.


Вид стоячей волны при резонансе в трубах с открытым и закрытым верхним концом. Ширина каждой цветной линии соответствует амплитуде колебаний в различных частях трубы. Стрелками указано направление движения воздуха во время одной половины колебательного цикла; во второй половине цикла направление движения меняется на обратное. Римскими цифрами обозначены номера гармоник. Для открытой трубы резонансными являются все гармоники основной частоты. Закрытая труба должна быть вдвое короче для создании той же ноты, но для нее резонансными являются только нечетные гармоники. Сложная геометрия «ротика» трубы несколько искажает конфигурацию волн ближе к нижнему концу трубы, не меняя их « основного» характера.

После того как мастер при изготовлении органа сделал одну трубу, обладающую необходимым звучанием, основная и наиболее трудная его задача – создать весь ряд труб соответствующей громкости и гармоничности звучании по всему музыкальному диапазону клавиатуры. Этого нельзя достичь простым набором труб одинаковой геометрии, различающихся только своими размерами, поскольку у таких труб потери энергии от трения и излучения будут по-разному влиять на колебания различной частоты. Чтобы обеспечить постоянство акустических свойств по всему диапазону, необходимо варьировать целым рядом параметров. Диаметр трубы меняется при изменении её длины и зависит от неё как степень с показателем k, где k меньше 1. Поэтому длинные басовые трубы делают более узкими. Расчётная величина k составляет 5/6, или 0,83, но с учётом психофизических особенностей человеческого слуха она должна быть уменьшена до 0,75. Это значение kочень близко к тому, которое эмпирически определили великие мастера органов XVII и XVIII вв.

В заключение рассмотрим вопрос, важный с точки зрения игры на органе: каким образом осуществляется управление звучанием множества труб в большом органе. Основной механизм этого управления прост и напоминает ряды и колонки матрицы. Трубы, располагаемые по регистрам, соответствуют рядам матрицы. Все трубы одного регистра обладают одним тембром, и каждая труба соответствует одной ноте на ручной или ножной клавиатуре. Подача воздуха к трубам каждого регистра регулируется специальным рычагом, на котором указано название регистра, а подача воздуха непосредственно к трубам, связанным с данной нотой н составляющим колонку матрицы, регулируется соответствующей клавишей на клавиатуре. Труба будет звучать лишь в том случае, если передвинут рычажок регистра, в котором она находится, и нажата нужная клавиша.

Размещение органных труб напоминает ряды и колонки матрицы. На этой упрощённой схеме каждый ряд, именуемый регистром, состоит из однотипных труб, каждая из которых производит одну ноту (верхняя часть схемы). Каждая колонка, связанная с одной нотой на клавиатуре (нижняя часть схемы), включает трубы разных типов (левая часть схемы). Рычажком на консоли (правая часть схемы) обеспечивается доступ воздуха ко всем трубам регистра, а нажатием клавиши на клавиатуре воздух нагнетается во все трубы данной ноты. Доступ воздуха в трубу возможен только при одновременном включении ряда и колонки.

В наше время можно применять самые различные способы осуществления подобной схемы с использованием цифровых логических устройств и электрически управляемых клапанов на каждой трубе. На старых органах использовались простые механические рычажки и пластинчатые клапаны для подачи воздуха в клавишные каналы и механические ползуны с отверстиями для управления поступлением воздуха к целому регистру. Эта простая и надёжная механическая система, помимо своих конструктивных достоинств, позволяла органисту самому регулировать скорость открытия всех клапанов и как бы делала ему более близким этот уж слишком механический музыкальный инструмент.

В XIX в начале XX в. строились большие органы со всевозможными электромеханическими и электропневматическим устройствами, но в последнее время предпочтение опять отдаётся механическим передачам от клавиш и педалей, а сложные электронные устройства используются для одновременного включения сочетаний регистров во время игры на органе. Например, самый большой орган в мире с механической передачей был установлен в концертном зале Сиднейского оперного театра в 1979 г. В нем 10500 труб в 205 регистрах, распределённых между пятью ручными и одной ножной клавиатурами. Клавишное управление осуществляется механическим способом, но оно дублируется электрической передачей, к которой можно подключаться. Благодаря этому исполнение органиста может быть записано в кодированной цифровой форме, которую затем можно использовать для автоматического воспроизведения на органе первоначального исполнения. Управление регистрами и их сочетаниями осуществляется с помощью электрических или электропневматических устройств и микропроцессоров с памятью, что позволяет широко варьировать управляющую программу. Таким образом, великолепное богатое звучание величественного органа создаётся сочетанием самых передовых достижений современной техники и традиционных приёмов и принципов, которые на протяжении многих столетий использовались мастерами прошлого.