По особенностям организации выделяют клетки прокариотического и эукариотического типов. К царству Прокариот относят царство Бактерий, к царству эукариот – все остальные царства: Грибы, Растения, Животные. Эволюционно прокариоты более ранние, чем эукариоты, они возникли в Архейскую эру (около 3*10 9 лет назад). Первые эукариоты появились около 2*10 9 лет назад, возможно от прокариот. Прокариоты – доядерные – не имеют морфологически обособленного ядра, т.к. ядерный материал не отграничен от цитоплазмы ядерной мембраной. Эукариоты – ядерные – генетический материал окружен ядерной оболочкой. Типичной прокариотической клеткой является бактериальные клетка: снаружи окружена клеточной стенкой особого химического состава, под клеточной стенкой – плазматическая мембрана, окружающая цитоплазму, в которой находится нуклеотид – аналог ядра. Сравнительная характеристика эукариот и прокариот:

Признак

Прокариоты

Эукариоты

1. Величина клетки

От 0,5 до 5 мкм

Оболочка клетки

Есть, отличная по химическому строению от эукариот. В стенке – пептидогликан.

Есть, различны у растений и животных, нет пептидогликана

Плазматическая мембрана

Мезосомы

Цитоплазма

Есть, движение отсутствует

Есть, движение есть

Мембранные органеллы -ЭПС, аппарат Гольджи, хлоропласты, митохондрии, лизосомы, пероксисомы, вакуоли.

Ядерная мембрана, наличие ядра

Организация генетического материала

1 молекула ДНК, кольцевая, находится в нуклеиде, не окружена ядерной мембраной; истинного ядра и хромосом нет

Линейная ДНК, связанная белками – гистонами и РНК, образуют хромосомы, находящиеся в ядре.

Внехромасомные факторы наследственности (цитоплазматические)

Рибосомы в цитоплазме

Включения

Цитоскелет

Простые микротрубочки отсутствуют, напоминают 1 из мкротрубочек оруженной плазматической мембраной

Сложные, с микротрубочками 2*9+2, окружены плазматической мембраной

Способность к активизации движений

Способность к эндоцитозу

Размножение

Бинарное деление

Митоз, мейоз

Скорость размножения

1 деление в 20 минут

1 деление в несколько минут

Спорообразование

Для сохранения вида – 1 спора

Для размножения много спор

Бактерии – плазматической мембраной. Цианобактерии – в цитоплазматических мембранах

В митохондриях

Фотосинтез

В мембранах, не имеющих специфической упаковки; хлоропластов нет

В сложноустроенных хлоропластах с гранулами

Способность к фиксации

Есть у некоторых

Неспособны

6. Основные структурные компоненты клетки Цитоплазма – представляет собой содержимое клетки, исключая ядерный аппарат (ядро). В состав цитоплазмы входит гиалоплазма, система эндомембран (мембранные органоиды) и не органоиды, в некоторых клетках цитоплазма содержит цитоплазматические включения. Гиалоплазма – является желеподобным веществом. В ней локализуются и функционируют все органоиды клетки. Гиалоплазма содержит множество ионов и низкомолекулярных белков (метаболитов) и высокомолекулярных белков. Этот компонент является микросредой, которая обеспечивает и регулирует процессы, протекающие в цитоплазме. Состав: 90% - вода, 10% - белки и водные растворы органических и неорганических веществ клетки. Система эндомембран – состоит из мембранных органоидов с их содержимым. К этим органоидам относятся эндоплазматическая сеть, комплекс Гольджи, микротельца и митохондрии. 7. Поверхностный аппарат клетки. Поверхностный аппарат клетки – является универсальной субсистемой, имеется у всех клеток. Поверхностный аппарат клетки определяет границу между цитоплазмой и внеклеточной средой, регулирует взаимодействие клетки с внешней средой. В составе поверхностного аппарата клетки выделяют 3 компонента: 1. Плазматическую мембрану, или плазмолемму 2. Надмембранный комплекс, или гликокаликс 3. Субмембранный комплекс или субмембранный опорно-сократительный аппарат. Плазмолемма – является структурной и функциональной основой поверхностного аппарата клетки и представляет собой сферически замкнутую биомембрану. Структура плазмолеммы соответствует жидкостно-мозаичной модели мембран. Надмембранный комплекс, или гликокаликс является наружней частью поверхностного аппарата клетки, располагаясь над плазмолеммой. В состав надмембранного комплекса включают: 1. Углеводные части гликолипидов и гликопротеидов 2. Периферические мембранные белки, расположенные на наружней части билипидного слоя 3. Интегральные и полуинтегральные белки, имеющие наружную зону, выступающую над билипидном слоем. 4. Специфические углеводы, не связанные химически с компонентами мембраны, локализованные над билипидном слоем. 5. Субмембранный комплекс или субмембранный опорно-сократительный аппарат – располагается под плазмолеммой, с внутренней стороны поверхностного аппарата клетки. В состав субмембранного опорно-сократительного аппарата выделяют периферическую гиалоплазму и опорно-сократительную систему. Периферическая гиалоплазма – является специализированной частью цитоплазмы, расположенной под плазмолеммой. Это жидкое высоко дифференцированное гетерогенное вещество, которое содержит в растворе разнообразные низкомолекулярные и высокомолекулярные молекулы. Периферическая гиалоплазма фактически является микросредой, в которой протекают общие и специфические процессы метаболизма. Она обеспечивает реализацию многих функций поверхностного аппарата клетки. В периферической гиалоплазме располагается второй компонент субмембранного опорно-сократительного аппарата - опорно-сократительная система. Опорно-сократительная система состоит из:

    Микрофибрилл, или микрофиламентов

    Скелетных фибрилл, или промежуточных филаментов

    Микротрубочек

Микрофиблиллы - нитивидные структуры, состоящие из: 1. Сократительного белка актина 2. Миозина Молекулы глобулярного актина образуют протофибриллы, формируют двойную спираль, к которой присоединяются белки. Для полимеризации необходимы: АТФ, высокая концентрация ионов Mg и белок филамин. Деполяризация актиновых миотфибрилл происходит при участии белка профилина. Процессы полимеризации и деполяризации происходят параллельно на противоположных концах миофибрилл. В опорно-сократительной системе имеются миозиновые микрофибриллы. Особенностями их строения является наличие “головок”, способных расщеплять АТФ. В ходе этого процесса головка присоединяются к актиновым микрофиламентам по отношению к миозиновым микрофилиментам. Скелетные фибриллы - образуются путем полимеризации отдельных белковых молекул. Скелетные фибриллы разного типа клеток состоят из разных белков. В эпителиальных клетках скелетные фибриллы формируются белком прекератином и называются тонофибриллами. Все скелетные фибриллы устойчивы к физическим и физическим агентам. Они выполняют опорную функцию и являются элементом цитоскелета. Число и длина скелетных фибрилл регулируется клеточными механизмами, изменения которых может вызывать аномалии функции клеток. Микротрубочки - занимают наиболее отдаленное от плазмолеммы положение. Стенки микротрубочек сформированы белками тубулинами. Структурной единицей микротрубочек являются димеры, состоящие из молекул -тубулина и  -тубулина. Микротрубочки включают и другие виды белков, которые называются МАР-белки. Эти белки обеспечивают эффективное функционирование микротрубочек. Формирование микротрубочек основано на процессе полимеризации тубулиновых димеров. Сначала образуются тубулиновые нити – протофиламенты , которые взаимодействуют между собой, образуя стенку микротрубочки. Как правило стенка микротрубочки состоит из 13 протофиламентов. В клетке полимеризация микротрубочек происходит путем самосборки при определенных условиях. Таким условием является наличие ГТФ (аналог АТФ), ионов магния, отсутствие кальция. Формирование новых микротрубочек осуществляется в центрах организации микротрубочек. Наиболее мощным центром организации микротрубочек являются центриоли. В инициации полимеризации микротрубочек играет белок -  -фактор .

Рибосомы являются важнейшими органоидами клетки, так как на них протекает процесс трансляции - синтез полипептида на матричной РНК (мРНК). Другими словами, рибосомы служат местом белкового синтеза .

Строение рибосом

Рибосомы относятся к немембранным органоидам. Они очень мелкие (около 20 нм), но многочисленные (тысячи и даже миллионы на клетку), состоят из двух частей – суб ъединиц . В состав субчастиц входят рибосомальные РНК (рРНК) и рибосомные белки, т. е. рибосомы по химическому составу являются рибонуклеопротеи д ами . Однако в них также присутствует небольшое количество низкомолекулярных соединений. Из-за многочисленности рибосом, рРНК составляет более половины от всей РНК клетки.

Одну из субъединиц называют «малой», вторую – «большой».

В собранной из субъединиц рибосоме выделят два (по одним источникам) или три (по другим) участка, которые называют сайтами . Один из участков обозначают A (aminoacyl) и называют аминоацильным, второй - P (peptidyl) - пептидильный. Данные сайты являются основными каталитическими центрами протекающих на рибосомах реакций. Третий участок обозначают E (exit), через него освободившаяся от синтезируемого полипептида транспортная РНК (тРНК), покидает рибосому.

Кроме перечисленных сайтов на рибосомах есть другие участки, используемые для связывания различных ферментов.

Когда субъединицы диссоциированы (разъединены) специфичность сайтов теряется, т. е. они определяются сочетанием соответствующих областей обеих субъединиц.

Отличие рибосом прокариот и эукариот

Соотношение по массе белков и РНК в рибосоме примерно поровну. Однако у прокариот белков меньше (около 40%).

Размеры как самих рибосом, так и субъединиц выражают в скорости их седиментации (осаждения) при центрифугировании. При этом S обозначает константу Сведберга - единицу, характеризующую скорость оседания в центрифуге (чем больше S, тем быстрее частица осаждается, а значит тяжелее). У прокариот рибосомы имеют размер в 70S, а у эукариот - в 80S (т. е. они тяжелее и крупнее). При этом субъединицы прокариотических рибосом имеют значения 30S и 50S, а эукариотических - 40S и 60S. Размеры рибосом в митохондриях и хлоропластах эукариот сходны с прокариотическими (хотя имеют определенную вариабельность по размерам), что может указывать на их происхождение от древних прокариотических организмов.

У прокариот в состав большой субъединицы рибосом входит две молекулы рРНК и более 30 молекул белка, в состав малой - одна молекула рРНК и около 20 белков. У эукариот в субъединицах больше молекул белка, а также в большой субъединице три молекулы рРНК. Составляющие рибосому белки и молекулы рРНК обладают способностью к самосборке и в итоге образуют сложную трехмерную структуру. Структуру рРНК поддерживают ионы магния.

Синтез рРНК

У эукариот в состав рибосом входят 4 вида рРНК. При этом три образуются из одного транскрипта-предшественника - 45S рРНК. Он синтезируется в ядрышке (на петлях хромосом его формирующем) при помощи РНК-полимеразы-1. Гены рРНК имеют много копий (десятки и сотни) и обычно располагаются на концах разных пар хромосом. После синтеза 45S рРНК разрезается на 18S, 5.8S и 28S рРНК, каждая из которых подвергается тем или иным модификациям.

Четвертый вид рРНК синтезируется вне ядрышка с помощью фермента РНК-полимеразы-3. Это 5S РНК, которая после синтеза не нуждается в .

Третичная структура рРНК в составе рибосом очень сложная и компактная. Она служит каркасом для размещения рибосомных белков, которые выполняют вспомогательные функции для поддержания структуры и функциональности.

Функция рибосом

Функционально рибосомы являются местом связывания молекул, участвующих в синтезе (мРНК, тРНК, различные факторы). Именно в рибосоме молекулы могут занять друг по отношению к другу такое положение, которое позволит быстро протечь химической реакции реакции.

В эукариотических клетках рибосомы могут находиться свободно в цитоплазме или быть прикрепленными с помощью специальных белков к ЭПС (эндоплазматическая сеть, она же ЭР - эндоплазматический ретикулум).

В процессе трансляции рибосома перемещается по мРНК. Часто по одной нитевидной мРНК двигаются несколько (или множество) рибосом, образуя так называемую полисому (полирибосому).

ПОСМОТРЕТЬ ЕЩЕ:

Рибосома представляет собой элементарную клеточную машину синтеза любых белков клетки. Все они построены в клетке одинаково, имеют одинаковую молекулярную композицию, выполняют одинаковую функцию – синтез белка – поэтому их можно так же считать клеточными органоидами. В отличие от других органоидов цитоплазмы (пластид, митохондрий, клеточного центра, мембранной вакуолярной системы и др.) они представлены в клетке огромным числом: за клеточный цикл их образуется 1 х 107 штук. Поэтому основная масса клеточной РНК представляет собой именно рибосомную РНК. РНК рибосом относительно стабильна, рибосомы могут существовать в клетках культуры ткани в течение нескольких клеточных циклов. В печеночных клетках время полужизни рибосом составляет 50-120 часов.

Рибосомы – это сложные рибонуклеопротеидные частицы, в состав которых входит множество молекул индивидуальных (неповторенных) белков и несколько молекул РНК, Рибосомы прокариот и эукариот по своим размерам и молекулярным характеристикам отличаются, хотя и обладают общими принципами организации и функционирования. К настоящему времени методом рентгеноструктурного анализа высокого разрешения полностью расшифрована структура рибосом.

Полная, работающая рибосома, состоит из двух неравных субъединиц, которые легко обратимо диссоциируют на большую субъединицу и малую. Размер полной прокариотической рибосомы составляет 20 х 17 х 17 нм, эукариотической – 25 х 20 х 20. Полная прокариотическая рибосома имеет коэффициент седиментации 70S и диссоциирует на две субъединицы: 50S и 30S. Полная эукариотическая рибосома, 80S рибосома, диссоциирует на 60S и 40S субъединицы. Форма и детальные очертания рибосом из разнообразных организмов и клеток, включая как прокариотические, так и эукариотические, поразительно похожи, хотя и отличаются рядом деталей. Малая рибосомная субъединица имеет палочковидную форму с несколькими небольшими выступами (см. рис. 81), ее длина составляет около 23 нм, а ширина – 12 нм. Большая субъединица похожа на полусферу с тремя торчащими выступами. При ассоциации в полную 70S рибосому малая субчастица ложится одним концом на один из выступов 50S частицы, а другим в ее желобок. В состав малых субъединиц входит по одной молекуле РНК, а в состав большой – несколько: у прокариот – две, а у эукариот – 3 молекулы. Характеристики молекулярной композиции рибосом даны в таблице 9.

Таблица 9. Молекулярная характеристика рибосом

Таким образом в состав эукариотической рибосомы входят четыре молекулы РНК разной длины: 28S РНК содержит 5000 нуклеотидов, 18SРНК – 2000, 5,8S РНК – 160, 5SРНК – 120.Рибосомные РНК обладают сложной вторичной и третичной структурой, образуя сложные петли и шпильки на комплементарных участках, что приводит к самоупаковке, самоорганизации этих молекул в сложное по форме тело. Так, например, сама по себе молекула 18S РНК в физиологических ионных условиях образует палочковидную частицу, определяющую форму малой субъединицы рибосом.

Под действием низких ионных сил, особенно при удалении ионов магния, плотные рибосомные субъединицы могут разворачиваться в рыхлые рибонуклеопротеидные тяжи, где можно наблюдать кластеры отдельных белков, но правильных структур, типа нуклеосом, нет, т.к. нет групп из сходных белков: в рибосоме все 80 белков разные.

Для того, чтобы образовались рибосомы необходимо наличие четырех типов рибосомных РНК в эквимолярных отношениях и наличие всех рибосомных белков. Сборка рибосом может происходить спонтанно in vitro , если последовательно добавлять к РНК белки в определенной последовательности.

Следовательно для биосинтеза рибосом необходим синтез множества специальных рибосомных белков и 4-х типов рибосомной РНК. Где эта РНК синтезируется, на каком количестве генов, где эти гены локализованы, как они организованы в составе ДНК хромосом – все эти вопросы в последние десятилетия были успешно разрешены при изучении строения и функции ядрышек.

Читайте также:

Рибосомы являются важнейшими органоидами клетки, так как на них протекает процесс трансляции - синтез полипептида на матричной РНК (мРНК). Другими словами, рибосомы служат местом белкового синтеза .

Строение рибосом

Рибосомы относятся к немембранным органоидам. Они очень мелкие (около 20 нм), но многочисленные (тысячи и даже миллионы на клетку), состоят из двух частей – суб ъединиц . В состав субчастиц входят рибосомальные РНК (рРНК) и рибосомные белки, т. е. рибосомы по химическому составу являются рибонуклеопротеи д ами . Однако в них также присутствует небольшое количество низкомолекулярных соединений. Из-за многочисленности рибосом, рРНК составляет более половины от всей РНК клетки.

Одну из субъединиц называют «малой», вторую – «большой».

В собранной из субъединиц рибосоме выделят два (по одним источникам) или три (по другим) участка, которые называют сайтами. Один из участков обозначают A (aminoacyl) и называют аминоацильным, второй - P (peptidyl) - пептидильный. Данные сайты являются основными каталитическими центрами протекающих на рибосомах реакций. Третий участок обозначают E (exit), через него освободившаяся от синтезируемого полипептида транспортная РНК (тРНК), покидает рибосому.

Кроме перечисленных сайтов на рибосомах есть другие участки, используемые для связывания различных ферментов.

Когда субъединицы диссоциированы (разъединены) специфичность сайтов теряется, т. е. они определяются сочетанием соответствующих областей обеих субъединиц.

Отличие рибосом прокариот и эукариот

Соотношение по массе белков и РНК в рибосоме примерно поровну. Однако у прокариот белков меньше (около 40%).

Размеры как самих рибосом, так и субъединиц выражают в скорости их седиментации (осаждения) при центрифугировании. При этом S обозначает константу Сведберга - единицу, характеризующую скорость оседания в центрифуге (чем больше S, тем быстрее частица осаждается, а значит тяжелее). У прокариот рибосомы имеют размер в 70S, а у эукариот - в 80S (т. е. они тяжелее и крупнее). При этом субъединицы прокариотических рибосом имеют значения 30S и 50S, а эукариотических - 40S и 60S. Размеры рибосом в митохондриях и хлоропластах эукариот сходны с прокариотическими (хотя имеют определенную вариабельность по размерам), что может указывать на их происхождение от древних прокариотических организмов.

У прокариот в состав большой субъединицы рибосом входит две молекулы рРНК и более 30 молекул белка, в состав малой - одна молекула рРНК и около 20 белков. У эукариот в субъединицах больше молекул белка, а также в большой субъединице три молекулы рРНК. Составляющие рибосому белки и молекулы рРНК обладают способностью к самосборке и в итоге образуют сложную трехмерную структуру. Структуру рРНК поддерживают ионы магния.

Синтез рРНК

У эукариот в состав рибосом входят 4 вида рРНК. При этом три образуются из одного транскрипта-предшественника - 45S рРНК. Он синтезируется в ядрышке (на петлях хромосом его формирующем) при помощи РНК-полимеразы-1. Гены рРНК имеют много копий (десятки и сотни) и обычно располагаются на концах разных пар хромосом. После синтеза 45S рРНК разрезается на 18S, 5.8S и 28S рРНК, каждая из которых подвергается тем или иным модификациям.

Четвертый вид рРНК синтезируется вне ядрышка с помощью фермента РНК-полимеразы-3. Это 5S РНК, которая после синтеза не нуждается в процессинге.

Третичная структура рРНК в составе рибосом очень сложная и компактная.

Отличия прокариот от эукариот

Она служит каркасом для размещения рибосомных белков, которые выполняют вспомогательные функции для поддержания структуры и функциональности.

Функция рибосом

Функционально рибосомы являются местом связывания молекул, участвующих в синтезе (мРНК, тРНК, различные факторы). Именно в рибосоме молекулы могут занять друг по отношению к другу такое положение, которое позволит быстро протечь химической реакции реакции.

В эукариотических клетках рибосомы могут находиться свободно в цитоплазме или быть прикрепленными с помощью специальных белков к ЭПС (эндоплазматическая сеть, она же ЭР - эндоплазматический ретикулум).

В процессе трансляции рибосома перемещается по мРНК. Часто по одной нитевидной мРНК двигаются несколько (или множество) рибосом, образуя так называемую полисому (полирибосому).

Функциональные центры рибосомы (А-сайт, Р-сайт, ПТФ-сайт, М-сайт, Е-сайт)

Предыдущая12345678910111213141516Следующая

Виды рибосом. Строение рибосомы, малая и большая субъединицы. Состав субъединиц – рибосомальные РНК, рибосомальные белки.

Полные рибосомные частицы и их субъединицы обозначаются в соответствии с коэффициентом седиминтации, выраженном в единицах Сведберга.

Всем прокариотам свойственны 70S рибосомы . Соотношение белка к РНК – 2:1. Состоит из двух субъединиц: 50S и 30S. Каждая содержит рРНК и определенное число небольших белков. У E.coli малая субъединица состоит из 1 рРНК (16S) и 21 рибосомального белка (S1, S2, S3 и тд.). Большая субъединица содержит 2 рРНК (23S, 5S) и 31белок (L1, L2, L3 и тд.). Полная рибосома имеет ассиметричное строение. На малой 4 отдела: гоовка, шейка, тело и основание/платформа. У большой хорошо различим центральный выступ\протурбанец, в кот.находится 5S рРНК, основной массив, в кот. находится белок L7, и бороздка м/д ними, в кот. находится пептидилтрансферазный сайт. М\д большой и малой субъединицей образуется полость, в кот.открывается большинство активных сайтов рибосомы.

Эукариоты имеют 80S рибосомы . Имеют больше рРНК и белков. Их соотношение 1:1. Состоят из малой (40S) и большой (60S) субъединицы. Малая содержит 18SрРНК и 33 рибосомальных белка. Большая – 3 цепи рРНК (5S, 5.8S, 28S) и 45-50 белков.

Рибосомы органелл отличаются от цитомпазматических.

2.2. Рибосомы прокариот и эукариот

Функциональные центры рибосомы (А-сайт, Р-сайт, ПТФ-сайт, М-сайт, Е-сайт).

Рибосома – кооперативная структура, кот.зависит от взаимодействия своих активных сайтов. Сайт А – участвует в связывании очередной аминоацил-тРНК, в нем находится кодон мРНК, кот.диктует рибосоме тип входящей аминоацил-тРНК/следующую аминокислоту растущего полипептида. Сайт Р – участок связывание пептидил-тРНК – растущий петтид, кот. связан своим С-концом с тРНК, кот. принесла последний аминокислотный остаток к рибосоме. Сайт Е – участок выхода тРНК из рибосомы. ДеацелированнаятРНК удерживается сайтом Е короткое время. Уэукариот нет этого сайта, из Р-сайта уходит сразу в цитоплазму. Каталитический сайт пептидилтрансферазы – находится на границе А и Р-сайтов, катализирует образование пептидной связи. ГТФ-азный центр – место посадки ГТФ, содействует запуску гидролиза АТФ

Биосинтез рибосомы,этапы процессинга рРНК. Химические модификации рРНК. Особенности строения и созревания рибосомы эукариот.

Процессинг рРНК: нарезание первичноготранскрипта, метилирование, сплайсинг. Уэукариот все рРНК синтезируются как часть одного транскрипта. Он нарезается с помощью экзо и эндонуклеаз на зрелыерРНК. Предшественник содержит 18, 5.8, 28SрРНК и называется 45S РНК. Процессинг рРНК требует участия мяРНК. У некоторых организмов в составе предшественника 28S РНК находятся вставки/интраны, кот. удаляются в результате процессинга и фрагменты РНК сшиваются в результате сплайсинга.

Упрокариот предшественник рРНК содержит 16, 23, 5SрРНК + несколько предшественников тРНК. 3 и 5’ концы сближены за счет комплиментарно прилегающих пар оснований. Такая структура разрезается РНКазойIII. Оставшиесярибонуклеотиды отрезаются экзонуклеазами/подравнивание.

Предыдущая12345678910111213141516Следующая

Клетки бактерий, сине-зеленых водорослей и актиномицетов содержат рибосомы с коэффициентом седиментации 70S. Этот коэффициент является мерой относительной плавучей плотности частиц при их центрифугировании в градиенте плотности хлористого цезия или сахарозы. Единица плавучей плотности S (сведберг) названа так в честь изобретателя ультрацентрифуги шведского ученого Т. Сведберга. Коэффициент седиментации зависит как от массы, так и от формы частицы. Молекулярная масса прокариотических рибосом составляет 2,5 мД, форма округлая со средним диаметром 25 нм. Общее количество рибосом в бактериальной клетке достигает 30 % ее сухого веса. Относительное количество белка в них в два раза меньше, чем РНК.

Рибосомы прокариотического типа с коэффициентом седиментации 70S содержатся также в хлоропластах высших растений. Однако рибосомы митохондрий, хотя и похожи на бактериальные, обладают более высокой видовой специфичностью. В частности, митохондриальные рибосомы дрожжей несколько крупнее типичных прокариотических рибосом (75S), тогда как митохондриальные рибосомы млекопитающих, наоборот, значительно меньше бактериальных (55S).

Клетки животных, растений, грибов и простейших содержат рибосомы с коэффициентом седиментации 80S. Их молекулярная масса составляет 4 мД, а средний диаметр — 30 нм. Относительное количество белка в них приблизительно равно количеству РНК. Эукариотический тип рибосом не имеет видовых различий.

Морфология рибосом

На маломувеличении электронного микроскопа (до 20 000х) рибосомы выглядят как электронно-плотные округлые частицы диаметром 25-30 нм. На большом увеличении (выше 100 000х) видно, что они разделены бороздкой на две неравные части, представляющие собой малую и большую субъединицы с соотношением масс 1:2.

В физиологических условиях рибосомы обратимо диссоциируют на субъединицы. При этом прокариотические рибосомы диссоциируют по схеме:

70S <=> 30S + 50S,

тогда как эукариотические рибосомы диссоциируют по схеме:

80S <=> 40S + 60S

Дефицит коэффициента седиментации связан с тем, что плавучая плотность рибосом зависит не только от массы субъединиц, но и от их формы.

Малая субъединица прокариотической рибосомы 30S имеет продолговатую форму, ее длина составляет 23 нм, а ширина – 12 нм. Она разделена на доли, которые называются “головка”, “тело” и “боковой выступ”. Наиболее выражена поперечная борозда, которая разделяет головку и тело. Малая субъединица эукариотической рибосомы 40S похожа на малую прокариотическую субъединицу 30S, но имеет две дополнительные детали – выступ головки со стороны, противоположной боковому выступу тела, а также раздвоенность дистального конца тела.

Большая субъединица прокариотической рибосомы 50S диаметром 25 нм внешне идентична большой субъединице эукариотической рибосомы 60S. В большой субъединице имеются три выступа: средний выступ или “головка”, боковая доля или “ручка”, палочковидный отросток или “носик”. В целом форма большой субъединицы напоминает чайник для заварки.

Объединение субъединиц в полную рибосому происходит строго закономерным образом. При этом головки и боковые выступы малой и большой субъединиц ориентируются в одну сторону и накладываются друг на друга. Уплощенные поверхности субъединиц также взаимно дополняют друг друга в пространстве.

Химический состав рибосом

Рибосома состоит из РНК и белков, причем основные структурно-функциональные свойства этого органоида определяются рибосомальной РНК.

Прокариотические рибосомы содержат три, а эукариотические — четыре молекулы рибосомальной РНК.

Рибосомальные РНК

РНК малой субъединицы с коэффициентами седиментации 16S и 18S имеет от 1500 до 1800 нуклеотидных остатков. Она обладает значительной внутренней комплементарностью, за счет чего формируется около трех десятков коротких двуспиральных участков – “шпилек”, которые детерминируют форму малой субчастицы.

Длинная молекула РНК большой субъединицы с коэффициентом седиментации 18S или 26S содержит от 3000 до 4800 нуклеотидных остатков. За счет внутренней комплементарности в ней формируется более 100 двойных спиралей, которые определяют форму субъединицы.

Кроме длинной РНК, большая субъединица прокариотических и эукариотических рибосом содержит также короткую 5S РНК, состоящую из 120 нуклеотидных остатков, которая за счет внутренней комплементарности формирует Т-образную структуру с 5 спиральными участками.

Большая субъединица эукариотических рибосом содержит дополнительно 5,8S РНК.

Рибосомы прокариот и эукариот

Она состоит из 160 нуклеотидных остатков и комплементарно связана с 26S РНК. Следует отметить, что 5,8S РНК большой субъединицы эукариотических рибосом гомологична 5’-концу бактериальной 23S РНК.

Таким образом, основная функция рибосомальных РНК состоит в формировании молекулярного скелета малой и большой субъединиц рибосомы.

Рибосомы содержат 50-70 различных белков, причем большинство из них представлено лишь одной молекулой. Молекулярная масса рибосомальных белков находится в пределах 10-30 кД, хотя отдельные полипептиды достигают массы 70 кД. Среди рибосомальных белков преобладают основные полипептиды, но встречаются также нейтральные и кислые белки. Малая субъединица прокариотической рибосомы содержит 20 белков, а большая – 30 белков. У эукариотических рибосом белков значительно больше: малая субъединица содержит 30 белков, а большая — 40.

Рибосомальные белки осуществляют разнообразные функции, связанные с ролью рибосомы как организатора биосинтеза белка:

  • формируют участки малой и большой субъединиц;
  • образуют центры связывания молекул;
  • катализируют химические реакции;
  • участвуют в регуляции биосинтеза белка;

Многие рибосомальные белки выполняют одновременно несколько функций.

Белоксинтезирующая система

Наследственная информация закодирована в первичной структуре ДНК, которая в эукариотических клетках сосредоточена в клеточном ядре. Участки ДНК, кодирующие первичную структуру полипептида – структурные гены, являются матрицами для синтеза информационной РНК (иРНК). Процесс образования функциональных копий генов в виде иРНК называется транскрипцией .

Отредактированные в ходе сплайсинга иРНК поступают затем в цитоплазму, где связываются с рибосомами. Используя информацию, закодированную в иРНК, рибосомы синтезируют полипептид в ходе процесса, называемого трансляцией . Синтез полипептида из аминокислот осуществляется в соответствии с генетическим кодом , который представляет собой правила соответствия аминокислот триплетам нуклеотидов в иРНК (кодонам ).

Кроме иРНК и рибосом для осуществления трансляции необходим еще ряд других молекул. Рибосомы совместно с молекулами, принимающими участие в трансляции, образуют белоксинтезирующую систему , которая может функционировать вне клетки. Составы минимальной и полной бесклеточной систем трансляции на прокариотических рибосомах представлены в следующей таблице.

Рибосомы эукариот и прокариот, сходства и различия

Рибосома (от «РНК» и soma – тело) – клеточный немембранный органоид, осуществляющий трансляцию (считывание кода мРНК и синтез полипептидов). Молекула белка рождается в цитоплазме клетки на свободных рибосомах или на цистернах транспортно-накопительной системы. Специальные белки шапероны, укладывают растущую цепочку в ажурную конструкцию. Затем, если нужно, белок достраивают. Различают 2 основных типа рибосом – прокариотные и эукариотные. В митохондриях и хлоропластах также имеются рибосомы, которые близки к рибосомам прокариот. Рибосомы эукариот расположены на мембранах эндоплазматической сети (гранулярная ЭС) и в цитоплазме. Прикрепленные к мембранам рибосомы синтезируют белок «на экспорт», а свободные рибосомы – для нужд самой клетки.

Рибосомы прокариот

У прокариот генетический материал не изолирован от аппарата трансляции, и прокариотные рибосомы занимают почти весь цитоплазматический компартмент. Относительное (по сравнению с другими органеллами) количество рибосом у прокариотов выше, чем у эукариотов, и это обеспечивает более высокую активность их метаболизма, а также более высокую скорость их роста и размножения. Рибосомы - это множественные генеральные микрокомпартменты, которые находятся в цитоплазматическом компартменте и выполняют роль универсальной белоксинтезирующей органеллы. За исключением редких случаев, когда полипептиды синтезируются нерибосомным путем, аминокислоты связываются в линейную цепь только благодаря ферментативной активности рибосом.

Биосинтетический процесс трансляции уникален, поскольку информация о порядке расположения нуклеотидных триплетов (код мРНК) переводится в информацию о порядке расположения аминокислот (код полипептида). Посредником между этими кодами, или «адаптером» (англ. adapter - звукосниматель аудиосистемы) является тРНК. Она доставляет аминокислоту в пептидилтрансферазный центр и одновременно с этим распознает ее кодон в молекуле мРНК.

Типы рибосом. Рибосома - это мультимолекулярный комплекс, состоящий из рРНК и рибосомных белков в массовом соотношении 2:1. В рабочем состоянии рибосома, или «моносома» представляет собой частицу диаметром 25 нм, которая состоит из двух субъединиц - большой L-субъединицы (от англ. large) и малой S-субъединицы (от англ. small). Они имеют разный состав, разную морфологию и выполняют разные функции.

По количественным признакам все рибосомы подразделяются на два типа - прокариотный и эукариотный. Прокариотная рибосома имеет коэффициент седиментации 70S (субъединицы 50S и 30S), а эукариотная рибосома -80S (субъединицы 60S и 40S). Прокариотная рибосома содержит три молекулы рРНК - 23S (~3000 нуклеотидов), 16S (~1500 нуклеотидов) и 5S (~120 нуклеотидов), а также 53-65 однокопий-ных белков. Эукариотная рибосома устроена сложнее прокариотной. Она содержит не три, а четыре молекулы рРНК -28S (4000-6000 нуклеотидов), 18S (1750-1850 нуклеотидов), 5S (~120 нуклеотидов) и 5,8S (~150 нуклеотидов), а также более богатый набор однокопийных белков (70-84).

Механизм трансляции.

Хотя современные представления об архитектуре рибосом и процессе трансляции сложились на основе данных, полученных на бактериях, доказано, что работа рибосомы универсальна у всех трех глобальных доменов. Результаты рентген-структурного анализа с уровнем разрешения 5,5А и криоэлектронной микроскопии дали для рибосомы Е. coli картину геометрического тела сложнейшей конфигурации, состоящего из взаимно переплетенных молекул рРНК и белка. Внутри него, а также на его поверхности имеются каналы, борозды, углубления, площадки, выступы и мостики.

Субстратами для биосинтеза полипептидной цепи служат аминоацил-тРНК, причем для каждой аминокислоты существует своя тРНК и своя аминоацил-тРНК-синтетаза. Специфические тРНК (~75 нуклеотидов) различаются по первичной структуре, однако все они имеют стандартную Г-образную третичную структуру. На дистальном конце длинного «локтя» находится антикодон, комплементарный триплету мРНК, который кодирует специфическую аминокислоту. На дистальном конце короткого «локтя» всех тРНК находится 3′-концевая последовательность ССА. К аденозину (по его 2′- или З’-гидроксильному радикалу) присоединяется а-карбоксильная группа специфической аминокислоты. В ходе трансляции антикодон длинного «локтя» распознает на S-субъединице кодон мРНК, а короткий «локоть» с аминокислотой взаимодействует на L-субъединице с пептидилтрансферазным центром, который катализирует образование пептидной связи.

Долгое время считали, что трансляцию обеспечивают рибосомные белки, а рРНК служит лишь каркасом для их сборки. Однако в настоящее время доказано, что роль главного катализатора трансляции играет рРНК, а белки выполняют структурную функцию.

Между субъединицами рибосомы существует разделение труда. Малая субъединица содержит декодирующий центр, который обеспечивает взаимодействие между мРНК и тРНК. Большая субъединица содержит пептидилтрансферазный центр. В организации декодирующего центра участвуют 16S рРНК и рибосомные белки, в то время как пептидилтрансферазный центр образован только 23S рРНК. Последовательность Шайна-Дальгарно (J. Shine, L. Dalgarno), предшествующая стартовому кодону мРНК, спаривается с комплементарной последовательностью на З’-конце 16S рРНК. Антикодоновый конец тРНК также взаимодействует с 16S рРНК, тогда как акцепторный конец тРНК взаимодействует с 23S рРНК.

Рибосома шаг за шагом образует пептидные связи в направлении от N-конца к С-концу. Для инициации полипептидной цепи у бактерий используется особая аминокислота - формилметионин, которая доставляется в рибосому с помощью специфической тРНК. Происходит спонтанная пептидилтрансферазная реакция: нуклеофильная а-аминогруппа аминоацил-тРНК атакует электрофильную карбонильную группу (*) в сложной эфирной связи между пептидом (или формил-метиониновой затравкой) и другой тРНК. Молекулы 16S рРНК и 23S рРНК образуют три сайта -Р, А и Е, каждый из которых представлен субсайтами в обеих субъединицах рибосомы. P-сайт (от англ. peptide) связывает пептидил-тРНК, A-сайт (от англ. amino acid) связывает аминоацил-тРНК, а Е-сайт (от англ. exit) связывает деацилированную тРНК.

Рабочий цикл рибосомы состоит из четырех этапов, или состояний.

1. В исходном состоянии Р/Р-А/А пептидил-тРНК находится в P-сайте, аминоацил-тРНК в A-сайте, Е-сайт свободен. Специфическая аминоацил-тРНК связывается с A-сайтом при помощи фактора элонгации EF-Tu. Для этого используется энергия гидролиза ГТФ. Тройственный комплекс аминоацил-тРНК/(ЕГ-Ти) × ГТФ прочно связывается с рибосомой только если антикодон комплементарен кодону в декодирующем субсайте А.

2. В «претранслокационном» состоянии Р/Р-А/А происходит пептидилтрансфераз-ная реакция. При этом аминокислота, находящаяся в A-сайте, образует связь с пептидом (или формилметионином, если цепь инициируется), который находится в P-сайте. В обоих случаях дипептид или полипептидная цепь, удлиннившаяся на один аминокислотный остаток, переносятся в А-сайт. Чтобы следующая молекула аминоацил-тРНК могла попасть в A-сайт, пептидил-тРНК должна освободить его и перейти в P-сайт. Этот процесс называется «транслокацией». При транслокации взаимодействующие друг с другом тРНК и мРНК перемещаются внутри рибосомы на расстояние до 50А.

3. В «гибридном транслокационном» состоянии Е/Р-Р/А связанный с пептидом конец тРНК перемещается на большой субъединице из А-субсайта в Р-субсайт, а акцепторный ССА-конец деацилированной тРНК перемещается из Р-субсайта в Е-субсайт. Этот этап транслокации напоминает «эффект домино» и зависит от рРНК. Его механизм еще неизвестен.

4. В «однородном транслокационном» состоянии Е/Е-Р/Р антикодоновый конец тРНК, связанной с пептидом, перемещается на малой субъединице из А-субсайта в ее же Р-субсайт, а антикодоновый конец деацилированной тРНК перемещается из Р-субсайта в Е-субсайт. В результате этого мРНК сдвигается в малой субъединице на один кодон. Теперь A-сайт может принять следующую молекулу аминоацил-тРНК, а деацилированная молекула тРНК может покинуть рибосому. Хотя этот этап транслокации зависит от рРНК, он ускоряется фактором элонгации EF-G, который использует энергию гидролиза ГТФ.

Действие многих антибиотиков (канамицина, неомицина, олеандомицина, стрептомицина, тетрациклина, хлорамфеникола и др.) основано на их связывании с факторами элонгации и сайтами, которые образует рРНК.

Структура рибосом эукариот

Рибосомы состоят из двух различных субчастиц, каждая из которых построена из рибосомной РНК и многих белков. Рибосомы и их субчастицы обычно классифицируют не по массам, а в соответствии с коэффициентами седиментации. Так. коэффициент седиментации полной эукариотической рибосомы составляет около 80 единиц Сведберга (80S), а коэффициент седиментации ее субчастиц составляет 40S и 60S.

Меньшая 40S-субчастица состоит из одной молекулы 18S-рРНК и 30-40 белковых молекул. Большая 60S-субчастица содержит три типа рРНК с коэффициентами седиментации 5S, 5,8S и 28S и 40-50 белков (например, рибосомы гепатоцитов крысы включают 49 белков). В присутствии мРНК (mRNA) субчастицы объединяются с образованием полной рибосомы, масса которой примерно в 650 раз больше массы молекулы гемоглобина. Рибосомы имеют диаметр 20-200 нм и их можно видеть в электронный микроскоп. Структурная организация рибосом полностью не выяснена. Однако известно, что молекулы мРНК проходит через щель около характерной структуры в виде «рога» на малой субчастице, причем эта щель ориентирована как раз в промежуток между двумя субчастицами. тРНК также связываются вблизи этого участка. Для сравнения на схеме в том же масштабе показана молекула тРНК.

В клетках эукариот рибосомы формируются в ядрышке, где на ДНК синтезируется р-РНК, к которой затем присоединяются белки. Субчастицы рибосомы выходят из ядра в цитоплазму, и здесь завершается формирование полноценных рибосом. В цитоплазме рибосомы свободно находятся в цитоплазматическом матриксе (гиалоплазме) или прикрепляются к внешним мембранам ядра и эндоплазматической сети. Свободные рибосомы синтезируют белки для внутренних нужд клетки. Рибосомы на мембранах образуют комплексы – полирибосомы, которые синтезируют белки, поступающие через эндоплазматическую сеть в аппарат Гольджи и затем секретируемые клеткой. Количество рибосом в клетке зависит от интенсивности биосинтеза белка – их больше в клетках активно растущих тканей (меристем растений, зародышей и т. п.). В хлоропластах и митохондриях есть свои собственные мелкие рибосомы, они обеспечивают этим органоидам автономный (независимый от ядра) биосинтез белков.

Каждая рибосома состоит из двух субчастиц — большой и малой. Рибосомы состоят из примерно равных (по массе) количеств РНК и белка (т.е. представляют собой рибонуклеопротеиновые частицы). Входящая в их состав РНК, называемая рибосомной РНК (рРНК), синтезируется в ядрышке.

Вместе те и другие образуют сложную трехмерную структуру, обладающую способностью к самосборке. Во время синтеза белка на рибосомах аминокислоты, из которых строится полипептидная цепь, последовательно одна за другой присоединяются к растущей цепи. Рибосома служит местом связывания для молекул, участвующих в синтезе, т. е. таким местом, где эти молекулы могут занять по отношению друг к другу совершенно определенное положение.

В синтезе участвуют: матричная РНК (мРНК), несущая генетические инструкции от ядра клетки, транспортная РНК (тРНК), доставляющая к рибосоме требуемые аминокислоты, растущая полипептидная цепь, а также ряд факторов, ответственные за инициацию, элонгацию и терминацию цепи. В эукариотических клетках отчетливо видны две популяции рибосом — свободные рибосомы и рибосомы, присоединенные к эндоплазматическому ретикулуму. Строение тех и других идентично, но часть рибосом связана с эндоплазматическим ретикулоумом через белки, которые они синтезируют. Такие белки обычно секретируются. Примером белка, синтезируемого свободными рибосомами, может служить гемоглобин, образующийся в молодых эритроцитах. В процессе синтеза белка рибосома перемещается вдоль нитевидной молекулы мРНК. Процесс идет более эффективно, когда вдоль мРНК перемещается не одна рибосома, а одновременно много рибосом, напоминающих в этом случае бусины на нитке. Такие цепи рибосом называются полирибосомами или полисомами. На эндоплазматическом ретикулуме полисомы обнаруживаются в виде характерных завитков.

Рибосомный синтез белка-многоэтапный процесс. Первая стадия (инициация) начинается с присоединения матричной РНК (мРНК) к малой рибосомной субчастице, не связанной с большой субчастицей. Характерно, что для начала процесса необходима именно диссоциированная рибосома. К образовавшемуся т. наз. инициаторному комплексу присоединяется большая рибосомная субчастица. В стадии инициации участвуют спец. инициирующий кодон (см. Генетический код), инициаторная транспортная РНК (тРНК) и специфич. белки (т. наз. факторы инициации). Пройдя стадию инициации, рибосома переходит к последоват. считыванию кодонов мРНК по направлению от 5′- к 3′-концу, что сопровождается синтезом полипептидной цепи белка, кодируемого этой мРНК В этом процессе рибосома функционирует как циклически работающая мол. машина.

Рабочий цикл рибосомы при элонгации состоит из трех тактов: 1) кодонзависимого связывания аминоацил-тРНК (поставляет аминокислоты в рибосому), 2) транспептидации-переноса С-конца растущего пептида на аминоацил-тРНК, т.е. удлинения строящейся белковой цепи на одно звено, 3) транслокации-перемещения матрицы (мРНК) и пептидил-тРНК относительно рибосомы и переход рибосомы в исходное состояние, когда она может воспринять след. аминоацил-тРНК. Когда рибосома достигнет специального терминирующего кодона мРНК, синтез полипептида прекращается. При участии специфич. белков (т. наз. факторов терминации) синтезир. полипептид освобождается из рибосомы. После терминации рибосома может повторить весь цикл с др. цепью мРНК или др. кодирующей последовательностью той же цепи.

В клетках с интенсивной секрецией белка и развитым эндоплазматич. ретикулумом значит. часть цитоплазматической рибосомы прикреплена к его мембране на поверхности, обращенной к цитоплазме. Эти рибосомы синтезируют полипептиды, которые непосредственно транспортируются через мембрану для дальнейшей секреции. Синтез полипептидов для внутриклеточных нужд происходит в основном на свободных (не связанных с мембраной) рибосомах цитоплазмы. При этом транслирующие рибосомы не равномерно диспергированы в цитоплазме, а собраны в группы. Такие агрегаты рибосом представляют собой структуры, где мРНК ассоциирована со многими рибосомами, находящимися в процессе трансляции; эти структуры получили назв. полирибосом или полисом.

При интенсивном синтезе белка расстояние между рибосомами вдоль цепи мРНК в полирибосоме может быть предельно коротким, т.е. рибосомы находятся почти вплотную друг к другу. Рибосомы, входящие в полирибосомы, работают независимо и каждая из них синтезирует полную полипептидную цепь.

Отличия в строении рибосом прокариотов и эукариотов

Прокариотическая клетка содержит несколько тысяч рибосом, в эукариотической клетке их в десятки раз больше. Рибосомы про- и эукариот отличаются по размерам (у прокариот они мельче, чем у эукариот), но принцип их строения одинаков. Состоят рибосомы из двух частей: большой и малой субъединиц. В их состав кроме белков входят РНК. Эти РНК получили название рибосомных, рРНК.

Величину рибосом и составляющих их частей принято указывать в специальных единицах — S (Сведберг). S — это коэффициент седиментации, который характеризует скорость перемещения молекул или частиц в центробежном поле при центрифугировании. Скорость перемещения зависит от массы частиц, их размеров и формы. Величина рибосом прокариот и эукариот — 70S и 80S соответственно.

В рибосомы прокариот входит три разных вида молекул рРНК (16S рРНК — в малую; 23S рРНК и 5S рРНК — в большую субъединицы) и 55 различных белков (21 — в малую и 34 — в большую субъединицы). В состав эукариотических рибосом входят четыре вида молекул рРНК (18S рРНК — в малую; 28S рРНК, 5.8S рРНК и 5S рРНК — в большую субъединицы) и около 80 белков. В митохондриях и хлоропластах также обнаружены рибосомы. Они характеризуются теми же свойствами и параметрами, что и рибосомы прокариот.

Молекулы рРНК взаимодействуют друг с другом и с белками, образуя компактные структуры — субъединицы рибосом. У эукариот соединение рРНК с рибосомными белками происходит в ядрышке. В центре ядрышка расположен участок хромосомы, в котором находятся гены рибосомных РНК. Синтезированные рРНК соединяются с рибосомными белками, которые поступили через ядерные поры из цитоплазмы, где они были синтезированы на уже существовавших рибосомах. Они соединяются с молекулами рРНК, образуя субъединицы рибосом. Готовые субъединицы через поры выходят в цитоплазму, где будут участвовать в синтезе белка.

Таким образом, ядрышко — это не только место синтеза рибосомных РНК, но и место сборки субъединиц рибосом. Рибосомы нужны в огромных количествах, поскольку в клетке постоянно идут процессы синтеза белка. Поэтому на хромосомах в тех местах, где расположены гены рРНК, находится громадное скопление молекул: синтезируемые рРНК, пришедшие из цитоплазмы рибосомные белки, собираемые и готовые суъединицы рибосом. Понятно, почему ядрышко является самой плотной частью ядра и клетки. Размеры ядрышка зависят от функционального состояния клеток. Если в клетке активно идут процессы биосинтеза белков, ядрышко может занимать до 25% от объема ядра.

Ядрышко образуется на тех хромосомах, где есть гены рРНК. Эти участки хромосом называются ядрышковыми организаторами. Например, у человека десять хромосом способны образовывать ядрышки. Каждый ядрышковый организатор представляет собой огромную хроматиновую петлю, так как содержит несколько десятков и даже сотен одинаковых последовательностей — генов рРНК. Эти последовательности расположены друг за другом и синтез рРНК идет одновременно со всех копий. Таким образом увеличивается интенсивность синтеза рРНК, на долю которой приходится более 90 % всей РНК клетки. Ядрышки, образованные разными хромосомами, очень часто сливаются друг с другом. В ядрах клеток человека обычно наблюдают одно, два или три ядрышка.

При начале трансляции малая субъединица рибосомы связывается с определенным участком иРНК, к ним присоединяется тРНК с аминокислотой, а затем с этим комплексом связывается большая субъединица. После этого рибосома готова к выполнению своей функции — синтезу белка. Белки рибосом способны выполнять свои функции только в составе рибосомы -только в комплексе с рРНК и другими рибосомными белками они приобретают небходимую конформацию.

Эукариотная транскрипция разделена с трансляцией в пространстве и времени. Транскрипция вместе с процессингом РНК происходят в нуклеоплазме, а трансляция, в зависимости от типа клеток, осуществляется преимущественно в цитозоле или на шероховатом эндогшазматическом ретикулуме (англ. rough endoplasmic reticulun, RER). Интегральные белки встраиваются в мембрану RER котрансляционно, а секретируемые белки выделяются в полость цистерны RER через тороидальный переходник между выходным порталом рибосомы и мембранным транслоконом (его образует белок Sec61).

У прокариотов не существует пространственно-временной изоляции процессов транскрипции и трансляции. Цитоплазматические рибосомы присоединяются к 5′-концу мРНК еще до завершения образования короткоживущего транскрипта. Котрансляционная инсерция интегральных белков известна только на примере «шероховатых тилакоидов» цианобактерий. Гидрофобные белки при помощи SRP-частиц презентируются транс локону - компоненту генеральной системы секреции Sec.

Транспортная РНК, напоминает в развернутой форме клеверный лист. Аминокислота прикреплена к “черешку клеверного листа”, а на вершине листа находится триплет, взаимодействующий с кодоном в иРНК — антикодон. Роль "заглавной буквы" при трансляции аминокислотной последовательности у прокариот выполняет измененная форма аминокислоты метионина — формилметионин. Ей соответствует кодон АУГ. После завершения синтеза полипептидной цепи формилметионин отщепляется и в готовом белке отсутствует. В том случае, когда триплет АУГ стоит внутри гена, он кодирует неизмененную аминокислоту метионин.

Если кодон и антикодон комплементарны друг другу, то рибосома передвигается относительно иРНК, и следующий кодон становится доступным для взаимодействия со следующей тРНК. Происходит отсоединение первой аминокислоты от первой тРНК и присоединение ее к аминокислоте, которую принесла вторая тРНК. Во время передвижения рибосомы относительно иРНК первая тРНК, свободная от аминокислоты, покидает рибосому. Вторая тРНК остается, соединенная с пептидом из двух аминокислотных остатков, и в рибосому входит третий кодон иРНК для взаимодействия с очередной тРНК и т.д.

Когда в рибосоме оказывается один из трех триплетов (УАА, УАГ, УГА), ни одна тРНК не может занять место напротив него, так как не существует тРНК с антикодонами, комплементарными этим последовательностям. Полипептидной цепи не к чему присоединиться и она покидает рибосому. Синтез белка завершен. Таким образом, рибосома соединяет в одном месте участников трансляции: иРНК и аминокислоты в комплексе с тРНК, при этом молекулы РНК так ориентированы относительно друг друга, что становится возможным кодон-антикодоновое взаимодействие. Образование пептидной связи контролируется правильностью кодон-антикодонового взаимодействия. Рибосома осуществляет образование пептидной связи и перемещение относительно иРНК.

Молекула информационной РНК взаимодействует не с одной рибосомой, а с несколькими. Каждая рибосома проходит весь путь от "заглавного" кодона до терминирующего, синтезируя одну молекулу белка. Чем больше рибосом пройдет по иРНК, тем больше молекул белка будет синтезировано. Молекула информационной РНК с несколькими рибосомами похожа на нитку бус и называется полирибосомой, или полисомой.

Рибосомы - немембранные универсальные органеллы, в состав которых входят рРНК и белки. Открытые в 1955 году Джорджем Палладе. О важности этих органелл в клетке свидетельствует тот факт, что в 2009 году американские ученые В. Рамакришнан, Т. Стейц и А. Йонат за изучение структуры рибосом получили Нобелевскую премию по химии.

В клетке созревшие рибосомы находятся преимущественно в компартментах, где активно осуществляется биосинтез белков. Они могут быть свободно расположенными в цитоплазме, прикрепленными к мембранам зернистой ЭПС, на ядерной оболочке, в пластидах и митохондриях. Находятся в прокариотических и эукариотических клетках, за исключением эритроцитов млекопитающих. Учитывая массу и распространения различают два вида рибосом:

1) малые рибосомы (70S) - содержатся в клетках прокариот, а также в пластидах и митохондриях эукариот; такие рибосомы подключен к мембранам и имеют диаметр 15 нм;

2) большие рибосомы (80S) - содержатся в цитоплазме клеток эукариотического типа; такие рибосомы имеют диаметр около 22 нм и связанные с мембранами гранулярной ЭПС.

Строение . Структурная организация рибосом принципиально одинакова. Каждая из этих органелл состоит из двух субъединиц: большой и малой. Субъединицы рибосом, как правило, обозначаются единицами Сведберга (S), является мерой скорости седиментации при центрифугирования, и зависят от массы, размера и формы частицы. В рибосомах эукариот эти большая и малая субъединицы имеют константу седиментации Сведберга, соответственно, 60S и 40S. Сочетаются обе субъединицы поперечными сторонами с помощью ионов магния (Мд2 +) с образованием узкой щели. Рибосомы в эукариот синтезируются в ядрышке. Матрицей для рРНК есть участки ДНК. В прокариот рибосомы образуются в цитоплазме в результате простого сочетания компонентов.

Химическая организация. Рибосомы содержат рибосомальной РНК (рРНК) и белок: 40 60% рРНК и 60-40% белка. В рибосомах находится около 80-90% всей РНК клетки. Каждая субъединица содержит по одной или две молекулы рРНК в виде клубка, плотно упакованного белками, створююе рибонуклеопротеидний комплекс. При снижении концентрации ионов магния в растворе может наступить изменение конформации РНК и развертывания тяжа. Неработающие рибосомы постоянно обмениваются субъединицами. Собираются они только в момент синтеза белков и формируют вместе с иРНК полисомы, или полирибосомы. Рибосомы могут размещаться в цитоплазме клетки одиночно, тогда они функционально неактивны. Сбор рибосом на иРНК происходит в начале синтеза белка. Количество рибосом зависит от метаболической активности клетки. Особенно много полисом есть в клетках, которые быстро делятся, и в тех, которые продуцируют большое количество белков. Количество рибосом в таких клетках может достичь 50 000, что составляет около 25% массы всей клетки.

Функции . Методом меченых аминокислот обнаружено, что в рибосомах происходит синтез белков. Полипептидные молекулы белка синтезируются таким образом, что определенные аминокислоты в рибосоме соединяются друг с другом в соответствующей последовательности. Поэтому информационная РНК, кодирующей порядок размещения аминокислот, имеет перемещаться по рибосоме. Чем больше рибосом содержит полисома, тем больше молекул полипептидов будет синтезироваться на ней одновременно. Синтез белка на рибосомах начинается с прикрепления рибосомы к определенному участку иРНК.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ДОКЛАД

по дисциплине:

«Введение в естествознание»

«Рибосомы. Роль РНК в архитектуре

и функциях рибосом.»

Факультет: ФЕН

Группа: 7403

Студент: Романова Т. Е.

Новосибирск, 2007 г.

1. История исследований рибосомы

2. Строение и функции, разновидности рибосом

3. Принципы функционирования, роль РНК

4. Список литературы

1. История исследования рибосомы

Рибосомы впервые были описаны как уплотненные частицы, или гранулы, клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов. В 1974 г. Паладе, Клод и Кристиан Де Дюв получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся структурной и функциональной организации клетки». Термин "рибосома" был предложен Ричардом Робертсом в 1958 вместо "рибонуклеобелковая частица микросомальной фракции". Биохимические и мутационные исследования рибосомы начиная с 1960-х позволили описать многие функциональные и структурные особенности рибосомы. В начале 2000-х появились атомные структуры отдельных субъединиц, а также полной рибосомы, связанной с различными субстратами, которые позволили понять механизм декодинга (распознавания антикодона тРНК, комплементарного кодону мРНК) и детали взаимодействий между рибосомой, антибиотиками, тРНК и мРНК.

Рибосома - крупный внутриклеточный макромолекулярный ансамбль, ответственный за синтез полипептидной цепи из аминокислот (трансляцию); состоит из молекул РНК (т. наз. рибосомные рибонуклеиновые кислоты, или рРНК) и белков.

Основная масса рибосом локализована в цитоплазме. В бактериальной клетке рибосомы составляют до 30% ее сухой массы: на одну бактериальную клетку приходится примерно 104 рибосом. В эукариотических клетках (клетки всех организмов, за исключением бактерий и синезеленых водорослей) относительное содержание рибосом меньше, и их количество очень сильно варьирует в зависимости от белок-синтезирующей активности соответствующей ткани или отдельной клетки.

В эукариотической клетке все рибосомы цитоплазмы (как мембрано-связанные, так и свободные) образуются в ядрышке; считается, что там они неактивны. Эукариотическая клетка имеет также специальные рибосомы в митохондриях (у животных и растений) и хлоропластах (у растений). Рибосомы этих органелл отличаются от цитоплазматических размерами и некоторыми функциональными свойствами. Они образуются непосредственно в этих органеллах.

Различают два основных типа рибосом. Всем прокариотическим организмам (бактерии и синезеленые водоросли) свойственны так называемые 70S рибосомы, характеризующиеся коэффициентом (константой) седиментации около 70 единиц Сведберга, или 70S (по коэф. седиментации различают и рибосомы других типов, а также субчастицы и биополимеры, входящие в состав Р.). Их молекулярная масса составляет 2,5 · 10 6 , линейные размеры 20-25 нм. По химическому составу это рибонуклеопротеиды; они состоят только из рРНК и белка (соотношение этих компонентов 2:1). Рибосомная РНК в рибосоме присутствует в основном в виде Mg-соли (по-видимому, частично и в виде Са-соли); магния в рибосоме до 2% от сухой массы. Кроме того, в различных количествах (до 2,5%) могут присутствовать также катионы аминов-спермина H2N(CH2)3NH(CH2)4NH(CH2)3NH2, спермидина H2N(CH2)3NH(CH2)4NH2 и др.

Поскольку коэффициенты седиментации зависят не только от молекулярной массы, но и от формы частиц, седиментационные коэффициенты при диссоциации неаддитивны: так, например, бактериальные рибосомы с молекулярной массой ~3*106 Дальтон имеет коэффициент седиментации 70S, обозначается как 70S и диссоциирует на субъединицы 50S и 30S: 70S 50S + 30S

Рибосомные субчастицы содержат по одной молекуле рРНК большой длины, масса которой составляет ~1/2 - 2/3 массы рибосомной субчастицы, таким образом, в случае бактериальных рибосом 70S субчастица 50S содержит рРНК 23S (длина ~3000 нуклеотидов) и субчастица 30S содержит рРНК 16S (длина ~1500 нуклеотидов); большая рибосомная субчастица кроме «длинной» рРНК содержит также одну или две «коротких» рРНК (5S рРНК бактериальных рибосомных субчастиц 50S или 5S и 5.8S рРНК больших рибосомных субчастиц эукариот).

Цитоплазма клеток всех эукариотических организмов содержит несколько более крупные 80S рибосомы. Их молекулярная масса около 4·10 6 , линейные размеры 25-30 нм, содержание белка в них значительно больше, чем в прокариотической рибосоме (соотношение РНК: белок ок. 1:1). Рибосомная РНК 80S также связана в основном с Mg и Са и с небольшим кол-вом полиаминов (спермин, спермидин и др.).

Хлоропласты и митохондрии эукариотических клеток содержат рибосомы, отличные от типа 80S. Рибосомы хлоропластов высших растений принадлежат к истинному 70S типу. Митохондриальные рибосомы более разнообразны; их строение находится в зависимости от таксономической принадлежности организма (т.е. от принадлежности к определенному виду, роду или семейству). Напр., митохондриальные рибосомы млекопитающих существенно мельче типичных 70S Р.; коэффициент седиментации этих рибосом составляет около 55S (т. наз. минирибосомы).

Рибосомы из самых разнообразных организмов имеют сходное строение. Они состоят из двух разделяемых субчастиц, или рибосомных субъединиц. При определенных условиях (например, при понижении концентрации Mg 2 + в среде) рибосома обратимо диссоциирует на две субчастицы с соотношением их молекулярных масс около 2:1. Прокарйотическая 70S рибосома диссоциирует на субъединицы с коэффициентом седиментации 50S (молекулярная масса 1,5·10 6) и 30S (молекулярная масса 0,85·10 6). Эукариотическая рибосома разделяется на субчастицы 60S и 40S. Две рибосомные субчастицы объединены в полную рибосому строго определенным образом, предполагающим специфические контакты их поверхностей.

Как прокариотические, так и эукариотические рибосомы содержат две различные высокомолекулярные рРНК (по одной на каждую субчастицу) и одну относительно низкомолекулярную рРНК в большой субчастице.

Рибосомные белки большинства животных представлены в основном умеренно основными полипептидами, хотя имеется несколько нейтральных и кислых белков. Молекулярные массы рибосомных белков варьирует от 6 тыс. до 60 тыс. г/моль. В прокариотической рибосоме малая субчастица (30S) содержит около 20, большая (50S) - около 30 различных белков; в эукариотической рибосоме 40S субчастица включает около 30 белков, а 60S-около 40 (обычно рибосомы не содержат двух или нескольких одинаковых белков). Рибосомные белки характеризуются глобулярной компактной конформацией с развитой вторичной и третичной структурой; они занимают преимущественно периферическое положение в ядре, состоящем из рРНК. Плотность упаковки рРНК в рибосомах достаточно высока.

По-видимому, рРНК определяет основные структурные и функциональные свойства рибосом, в частности обеспечивает целостность рибосомных субъединиц, обусловливает их форму и ряд структурных особенностей. Специфическая пространственная структура рРНК детерминирует локализацию всех рибосомных белков, играет ведущую роль в организации функциональных центров рибосом.

3. Принципы функционирования, роль РНК

Биосинтез белка имеет два аспекта: химический и генетический. Принципиальным моментом является то, что в природе белок строится из аминокислот не посредством их прямой конденсации с освобождением воды или одновременной полимеризации на матрице, а путем последовательного добавления аминокислотных остатков к одному из концов растущей полипептидной цепи (удлинения) с одновременным сканированием матричного полинуклеотида (мРНК), задающего порядок добавления различных аминокислотных остатков. Три последовательные химические реакции приводят к включению (добавлению) аминокислоты в полипептидную цепь строящегося белка.

Разделение декодирующей и энзиматической функций между субчастицами

Трансляция начинается с того, что мРНК, синтезируемая на ДНК в качестве копии одной из двух цепей последней, связывается с рибосомной частицей. При этом рибосомная частица (у прокариот прямо и непосредственно, а у эукариот после некоторого скольжения вдоль некодирующей части мРНК) специфически взаимодействует с началом кодирующей нуклеотидной последовательности мРНК. Этап связывания мРНК с рибосомной частицей и нескольких последующих событий, приводящих к образованию первой пептидной связи, называется инициацией трансляции. Вслед за инициацией рибосома последовательно "читает" цепочку мРНК по тройкам (триплетам) нуклеотидов по направлению к 3"-концу, наращивая (удлиняя) полипептидную цепочку аминокислотными остатками; этот этап собственно трансляции называется элонгацией. Наконец, достигнув специального нуклеотидного триплета - стоп-кодона, или кодона терминации, - рибосома освобождает синтезированную полипептидную цепочку белка: происходит терминация трансляции.

Генетические функции малой рибосомной субчастицы.

Характерным моментом инициации трансляции является то, что на этом этапе участвуют не целые рибосомы, а их отдельные субчастицы. Другими словами, для того чтобы инициировать трансляцию, рибосома должна быть диссоциирована на две составляющие ее неравные субчастицы. Для этого клетка располагает специальными механизмами, обеспечивающими диссоциацию рибосом после терминации трансляции. Именно малая субчастица рибосомы (30S у прокариот и 40S у эукариот), и только она, связывается с мРНК, то есть служит первичным приемником генетической информации для белоксинтезирующего аппарата. Лишь впоследствии, при завершении этапа инициации трансляции, к ней присоединяется большая субчастица (50S у прокариот и 60S у эукариот), образуя полную рибосомную частицу (70S у прокариот и 80S у эукариот), которая и будет производить элонгацию.

В процессе элонгации рибосома удерживает мРНК и движется относительно ее (или протягивает ее сквозь себя) в направлении от 5"-конца к 3"-концу. Удержание мРНК на рибосоме есть целиком и полностью функция малой рибосомной субчастицы, в то время как большая субчастица с мРНК никак не взаимодействует. Соответственно последовательное сканирование кодирующей последовательности мРНК (считывание генетической информации) в ходе элонгации осуществляется на малой субчастице транслирующей рибосомы.
Механизм потриплетного сканирования мРНК в ходе элонгации предполагает участие молекул тРНК, которые взаимодействуют прежде всего с малой рибосомной субчастицей. Малая субчастица в составе полной транслирующей рибосомы имеет два тРНК-связывающих участка, обозначаемых как аминоацил-тРНК-связывающий участок (А-участок) и пептидил-тРНК-связывающий участок (Р-участок). На этапе элонгации Р-участок всегда занят остатком тРНК.

Рассмотрение элементарного акта элонгации удобно начать с момента, когда Р-участок занят молекулой пептидил-тРНК (тРНК, несущая растущую полипептидную цепь), а А-участок вакантен и содержит лишь некий нуклеотидный триплет (кодон) мРНК, пока не взаимодействующий ни с каким триплетом (антикодоном) тРНК (рис. 1, состояние I). Такая рибосома готова (компетентна) связать аминоацил-тРНК, антикодон которой комплементарен триплету (кодону), установленному в А-участке. При наличии около рибосомы такой аминоацил-тРНК происходит первый шаг элементарного элонгационного цикла - кодонспецифическое связывание аминоацил-тРНК с А-участком. Теперь рибосома несет "старую" пептидил-тРНК в Р-участке и новоявленную аминоацил-тРНК в А-участке, которые расположены рядом, бок о бок (рис. 1, состояние II). Следовательно, в результате кодон-антикодонового взаимодействия мРНК с тРНК на малой субчастице рибосомы произошло декодирование триплета мРНК: именно тот аминокислотный остаток, который был привешен к тРНК с комплементарным антикодоном, оказался в рибосоме.

Далее молекулы пептидил-тРНК и аминоацил-тРНК, расположенные рядом в рибосоме, реагируют друг с другом: пептидильный остаток переносится на аминогруппу молекулы аминоацил-тРНК. Это второй шаг элементарного элонгационного цикла - транспептидация, когда полипептидная цепь удлиняется на одну аминокислоту - на ту, которую принесла тРНК, связавшаяся с А-участком. А сама тРНК, принесшая эту аминокислоту, так и осталась с ней связанной и, таким образом, связанной с удлиненным полипептидом (рис. 1, состояние III). В этом состоянии, однако, новообразованная пептидил-тРНК - точнее, ее остаток тРНК - занимает "не положенный ей" А-участок, а "сидит" в Р-участке деацилированная (без пептидильного или аминоацильного остатков) тРНК. Такое состояние называется претранслокационным. Дальше элонгация идти не может, пока не осуществится третий шаг элонгационного цикла - транслокация, которая выбросит деацилированную тРНК из Р-участка и переведет пептидил-тРНК из А-участка в Р-участок вместе со связанным с ней кодоном мРНК. В результате в освободившемся А-участке на малой рибосомной субчастице установится следующий (новый) кодон мРНК.

Цикл завершился, приведя к образованию одной пептидной связи и соответствующему удлинению растущего полипептида на одну аминокислоту, с одной стороны, и к прочтению одного кодона мРНК и перемещению мРНК на один триплет - с другой. Повторение таких элементарных циклов и создает процесс элонгации.

Таким образом, малая рибосомная субчастица в изолированном состоянии воспринимает копию гена в форме мРНК и инициирует процесс ее трансляции, а в ходе трансляции малая субчастица полной рибосомы удерживает мРНК на себе, декодирует ее с помощью тРНК и последовательно перебирает ее кодоны и тРНК, используя механизм транслокации. Так как все это операции с генетическим материалом, то указанные функции малой рибосомной субчастицы могут быть определены как генетические.

Рис. 2: Реакция транспептидации, катализируемая пептидилтрансферазным центром большой рибосомной субчастицы

Энзиматические функции большой рибосомной субчастицы.

Когда пептидил-тРНК занимает Р-участок, а аминоацил-тРНК - А-участок на малой субчастице рибосомы (см. рис. 1, состояние II) , концы остатков тРНК с присоединенными к ним аминоацильными остатками взаимодействуют с большой субчастицей рибосомы. Участок этого взаимодействия на большой субчастице является пептидилтрансферазным центром рибосомы: он катализирует реакцию транспептидации между пептидил-тРНК и аминоацил-тРНК, то есть перенос карбоксильной группы пептидильного остатка на аминогруппу аминоацил-тРНК (рис. 2). В результате образуется новая пептидная связь, и пептидильный остаток становится на одну аминокислоту длиннее. Таким образом, большая субчастица транслирующей рибосомы выступает здесь как фермент, ответственный за образование пептидных связей и в целом за синтез (элонгацию) полипептидной цепи. Это главная энзиматическая функция рибосомы.

Следует отметить, что никакого отдельного от рибосомы белка-фермента, катализирующего образование пептидных связей на рибосоме, не существует. Не найдено и никакого специального белка в составе рибосомы, который бы обладал такой энзиматической функцией. Транспептидация катализируется пептидилтрансферазным центром самой рибосомы как интегральной частью большой рибосомной субчастицы, и основной вклад в организацию центра вносит, по-видимому, рибосомная РНК субчастицы.

Кроме катализа реакции транспептидации большая рибосомная субчастица определенным образом участвует в энзиматическом расщеплении (гидролизе) гаунозинтрифосфата (ГТФ) в процессе трансляции. Дело в том, что, как видно на рис. 1, первый и третий шаги элонгационного цикла идут с участием специальных нерибосомных белков - так называемых факторов элонгации EF1 и EF2. Эти белки являются катализаторами соответствующих нековалентных переходов - связывания аминоацил-тРНК и транслокации. Для такого катализа необходимым оказывается сопряженный гидролиз ГТФ. Именно большая рибосомная субчастица взаимодействует с факторами элонгации и индуцирует гидролиз ГТФ на них. Хотя сам ГТФазный центр находится не на рибосомной субчастице, а на белке - факторе элогнации, ее временная ассоциация с фактором существенна для формирования активного энзиматического ГТФазного центра.

Таким образом, существует четкое разделение труда между двумя неравными субчастицами рибосомы: малая субчастица выполняет генетические функции, будучи ответственной за прием и декодирование генетической информации, в то время как большая участвует в энзиматических реакциях в процессе трансляции.

Конформационная подвижность рибосомы


Работа рибосомы в качестве "лентопротяжного механизма" последовательное прочитывание цепи мРНК от одного конца к другому) в ходе элонгации и ее способность перебрасывать сравнительно большие молекулярные массы (молекулы тРНК) из одного участка в другой в каждом элементарном элонгационном цикле (см. рис. 1, шаг 3) предполагают ее механическую подвижность. Взаимная подвижность двух рибосомных субчастиц может быть основным видом крупноблочной подвижности рибосомы в ходе работы, и имеются экспериментальные свидетельства в пользу такой подвижности. Кроме того, существуют указания на подвижность "головки" малой рибосомной субчастицы относительно ее "тела" и на подвижность палочкообразного бокового выступа большой рибосомной субчастицы.

Рибосома при прохождении элонгационного цикла осциллирует между двумя конформационными состояниями: закрытым (сомкнутым) и открытым (разомкнутым). В сомкнутом состоянии рибосомные лиганды (тРНК) зажаты между субчастицами, связаны максимальным количеством контактов с рибосомой и не имеют внутририбосомной подвижности. В разомкнутом состоянии рибосомы лиганды более подвижны, контакты с рибосомой менее полны, и имеется возможность их входа и выхода из рибосомы. Так, на первом этапе связывания аминоацил-тРНК рибосома должна быть открыта для приема лиганда. Возможно, это открытое состояние фиксируется фактором элонгации EF1. Далее EF1 уходит, рибосомные субчастицы плотно смыкаются, и аминоацильный конец связавшейся аминоацил-тРНК вступает в контакт с пептидилтрансферазным центром большой субчастицы. В сомкнутом состоянии пептидил-тРНК и аминоацил-тРНК тесно сближены, и между ними происходит реакция транспептидации. Теперь, чтобы выбросить деацилированную тРНК из рибосомы и дать свободу для перемещения остатка тРНК молекулы пептидил-тРНК из А-участка в Р-участок, рибосому надо приоткрыть, в частности путем раздвигания субчастиц. Это может осуществляться фактором элонгации EF2. После ухода EF2 с рибосомы она снова смыкается и ждет прихода очередной аминоацил-тРНК с фактором элонгации EF1.

Процесс периодического смыкания-размыкания рибосомы является энергозависимым: факторы элонгации EF1 и EF2 взаимодействуют с рибосомой только будучи связанными с ГТФ (согласно модели, при этом взаимодействии происходит открывание рибосомы), а взаимодействие с рибосомой наводит ГТФазную активность, ГТФ гидролизуется, фактор элогации теряет сродство к рибосоме и уходит, и рибосома закрывается. Таким образом, на каждое смыкание-размыкание рибосомы расходуется одна молекула ГТФ. Так как в каждом элонгационном цикле рибосома смыкается-размыкается дважды, то две молекулы ГТФ расходуются на каждый цикл. Это есть энергетическая плата за эффективное (быстрое и надежное) функционирование рибосомы как молекулярной машины.

4. Список литературы

1. Спирин А.С. Принципы структуры рибосом // Соросовский Образовательный Журнал. 1998. N 11. С. 65-70.

2. Спирин А.С. Молекулярная биология: Структура рибосомы и биосинтез белка. М.: Высш. шк., 1986. 300 с.

3. Спирин А.С. О механизме работы рибосомы: Гипотеза смыкания-размыкания субчастиц // Докл. АН СССР. 1968. Т. 179. С. 1467-1470.