Важнейшей характеристикой при движении тела является его скорость. Зная ее, а также некоторые другие параметры, мы всегда можем определить время движения, пройденное расстояние, начальную, конечную скорость и ускорение. Равноускоренное движение же является только одним из типов движения. Обычно оно встречается в задачах по физике из раздела кинематики. В подобных задачах тело принимают за материальную точку, что существенно упрощает все расчеты.

Скорость. Ускорение

Прежде всего, хотелось бы обратить внимание читателя на то, что эти две физических величины являются не скалярными, а векторными. А это значит, что при решении определенного рода задач необходимо обращать внимание на то, какое ускорение имеет тело в плане знака, а также каков вектор самой скорости тела. Вообще в задачах исключительно математического плана подобные моменты опускают, но в задачах по физике это достаточно важно, поскольку в кинематике из-за одного неверно поставленного знака ответ может получиться ошибочным.

Примеры

В качестве примера можно привести равноускоренное и равнозамедленное движение. Равноускоренное движение характеризуется, как известно, разгоном тела. Ускорение остается постоянным, но скорость непрерывно увеличивается в каждый отдельный момент времени. А при равнозамедленном движении ускорение имеет отрицательное значение, скорость тела непрерывно снижается. Эти два вида ускорения заложены в основу многих физических задач и достаточно часто встречаются в задачах первой части тестов по физике.

Пример равноускоренного движения

Равноускоренное движение мы встречаем ежедневно повсеместно. Ни один автомобиль не движется в реальной жизни равномерно. Даже если стрелка спидометра показывает ровно 6 километров в час, следует понимать, что это на самом деле не совсем так. Во-первых, если разбирать данный вопрос с технической точки зрения, то первым параметром, который будет давать неточность, станет прибор. Вернее, его погрешность.

Их мы встречаем во всех контрольно-измерительных приборах. Те же самые линейки. Возьмите штук десять хоть одинаковых (по 15 сантиметров, например) линеек, хоть разных (15, 30, 45, 50 сантиметров). Приложите их друг к другу, и вы заметите, что есть небольшие неточности, а их шкалы не совсем совпадают. Это и есть погрешность. В данном случае она будет равна половине цены деления, как и у других приборов, выдающих определенные значения.

Вторым фактором, который будет давать неточность, является масштаб прибора. Спидометр не учитывает такие величины, как половина километра, одна вторая километра и так далее. Заметить на приборе это глазом достаточно тяжело. Практически невозможно. Но ведь изменение скорости есть. Пускай на такую маленькую величину, но все же. Таким образом, это будет равноускоренное движение, а не равномерное. То же самое можно сказать и про обычный шаг. Идем, допустим, мы пешком, и кто-то говорит: наша скорость - 5 километров в час. Но это не совсем так, а почему, было рассказано немного выше.

Ускорение тела

Ускорение может быть положительным и отрицательным. Об этом говорилось ранее. Добавим, что ускорение - это векторная величина, которая числено равна изменению скорости за определенный промежуток времени. То есть через формулу его можно обозначить следующим образом: a = dV/dt, где dV - изменение скорости, dt - промежуток времени (изменение времени).

Нюансы

Сразу может возникнуть вопрос о том, как ускорение при таком раскладе может быть отрицательным. Те люди, которые задают подобный вопрос, мотивируют это тем, что даже скорость не может быть отрицательной, не то что время. На самом деле время отрицательным быть действительно не может. Но очень часто забывают о том, что скорость принимать отрицательные значения вполне может. Это же векторная величина, не следует забывать об этом! Все дело, наверное, в стереотипах и некорректном мышлении.

Так вот, для решения задач достаточно уяснить одну вещь: ускорение будет положительным в том случае, если тело разгоняется. И оно будет отрицательным в том случае, если тело тормозит. Вот и все, достаточно просто. Простейшее логическое мышление или способность видеть между строк уже будет, по сути дела, частью решения физической задачи, связанной со скоростью и ускорением. Частный случай - это ускорение свободного падения, и оно не может быть отрицательным.

Формулы. Решение задач

Следует понимать, что задачи, связанные со скоростью и ускорением, бывают не только практического, но и теоретического характера. Поэтому мы будем разбирать их и по возможности постараемся объяснить, почему тот или иной ответ правильный или, наоборот, неправильный.

Теоретическая задача

Очень часто на экзаменах по физике в 9 и 11 классах можно встретить подобные вопросы: "Как будет вести себя тело, если сумма всех действующих на него сил равна нулю?". На самом деле формулировка вопроса может быть самой разной, но ответ все равно один. Здесь первым делом в ход нужно пускать поверхностные здания и обыкновенное логическое мышление.

На выбор ученика предоставляется 4 ответа. Первый: “скорость будет равна нулю”. Второй: “скорость тела убывает в течение некоторого периода времени”. Третий: “скорость тела постоянна, но она точно не равна нулю”. Четвертый: “скорость может иметь любое значение, но в каждый момент времени она будет постоянной”.

Правильным ответом здесь будет, конечно же, четвертый. Сейчас разберемся, почему именно так. Давайте попробуем рассмотреть все варианты по очереди. Как известно, сумма всех сил, действующих на тело, есть произведение массы на ускорение. Но масса у нас остается величиной постоянной, ее мы отбросим. То есть если сумма всех сил равна нулю, ускорение тоже будет равно нулю.

Итак, предположим, что скорость будет равна нулю. Но этого не может быть, поскольку нулю у нас равно ускорение. Чисто физически это допустимо, но только не в данном случае, поскольку сейчас речь идет о другом. Пускай скорость тела убывает в течение некоторого периода времени. Но как она может убывать, если ускорение постоянно, и оно равно нулю? Никаких причин и предпосылок для убывания или возрастания скорости нет. Поэтому второй вариант мы отметаем.

Предположим, что скорость тела постоянна, но она точно не равна нулю. Она действительно будет постоянной в силу того, что ускорение просто-напросто отсутствует. Но нельзя однозначно сказать, что скорость будет отлична от нулевой. А вот четвертый вариант - прямо в яблочко. Скорость может быть любой, но, поскольку ускорение отсутствует, она будет постоянной во времени.

Практическая задача

Определите, какой путь был пройден телом в определенный период времени t1-t2 (t1 = 0 секунд, t2 = 2 секунды), если имеются следующие данные. Начальная скорость тела на отрезке от 0 до 1 секунды равна 0 метров в секунду, конечная - 2 метра в секунду. Скорость тела по состоянию на время 2 секунды равна также 2 метрам в секунду.

Решить подобную задачу достаточно просто, нужно лишь уловить ее суть. Итак, требуется найти путь. Ну что же, начнем искать его, предварительно выделив два участка. Как легко заметить, первый участок пути (от 0 до 1 секунды) тело проходит равноускоренно, о чем свидетельствует увеличение его скорости. Тогда найдем это ускорение. Его можно выразить как разность скоростей, разделенную на время движения. Ускорение будет равно (2-0)/1 = 2 метра на секунду в квадрате.

Соответственно, расстояние, пройденное на первом участке пути S будет равно: S = V0t + at^2/2 = 0*1 + 2*1^2/2 = 0 + 1 = 1 метр. На втором же участке пути в период от 1 секунды до 2 секунд тело движется равномерно. Значит, расстояние будет равно V*t = 2*1 = 2 метра. Теперь суммируем расстояния, получаем 3 метра. Это и есть ответ.

При постоянном ускорении скорость физического тела равномерно возрастает, начиная с нуля.

Расстояние, пройденное равноускоренным телом, начиная с нулевой скорости, пропорционально квадрату времени.

Галилео Галилей относится к числу людей, прославившихся совсем не тем, за что им следовало бы пользоваться заслуженной славой. Все помнят, как этого итальянского естествоиспытателя в конце жизни подвергли суду инквизиции по подозрению в ереси и заставили отречься от убеждения, что Земля вращается вокруг Солнца. На самом же деле, этот судебный процесс на развитие науки практически не повлиял — в отличие от ранее проделанных Галилеем опытов и сделанных им на основании этих опытов выводов, которые фактически предопределили дальнейшее развитие механики как раздела физической науки.

Движение физических тел изучалось с незапамятных времен, и основы кинематики были заложены задолго до рождения Галилея. Элементарные задачи описания движения сегодня изучают уже в начальной школе. Например, все знают, что если автомобиль равномерно движется со скоростью 20 км/ч, то за 1 час он проедет 20 км, за 2 часа — 40 км, за 3 часа — 60 км и т. д. И до тех пор, пока машина движется с постоянной скоростью (стрелка спидометра не отклоняется от заданного деления на его шкале), рассчитать пройденное расстояние труда не составляет — достаточно умножить скорость машины на время, которое она находится в пути. Этот факт известен настолько давно, что имя его первооткрывателя наглухо затерялось в тумане античных времен.

Сложности возникают, как только объект начинает двигаться с переменной скоростью. Трогаетесь вы, к примеру, от светофора — и стрелка спидометра ползет от нуля вверх, пока вы не отпустите педаль газа и не нажмете педаль тормоза. На самом деле стрелка спидометра на месте практически не стоит — она всё время движется вверх или вниз. В начале каждой отдельно взятой секунды реальная скорость машины одна, а в конце секунды — уже другая, и пройденный ею за секунду путь точно рассчитать не так-то просто. Эта проблема — описание движения с ускорением — волновала естествоиспытателей задолго до Галилея.

Сам же Галилео Галилей подошел к ней новаторски и, фактически, задал направление всего дальнейшего развития современной методологии естествознания. Вместо того чтобы сидеть и умозрительно решать вопрос о движении ускоряющихся тел, он придумал гениальные по своей простоте опыты, позволяющие экспериментально проследить, что в действительности происходит с ускоряющимися телами. Нам может показаться, что ничего особенно новаторского в таком подходе нет, однако до Галилея основным методом решения проблем «натурфилософии» — о чем говорит само название тогдашней естественной науки — было умозрительное осмысление происходящего, а не его экспериментальная проверка. Сама идея проведения физических экспериментов была в то время по-настоящему радикальной. Чтобы понять идею опытов Галилея, представьте себе тело, падающее под воздействием силы земного притяжения. Выпустите какой-нибудь предмет из рук — и он упадет на пол; при этом в первое мгновение скорость его движения будет равна нулю, но он тут же начнет ускоряться — и будет продолжать ускоряться, пока не упадет на землю. Если мы сможем описать падение предмета на землю, мы затем сможем распространить это описание и на общий случай равноускоренного движения.

Сегодня измерить динамику падения предмета не сложно — можно с большой точностью зафиксировать время от начала падения до любой промежуточной точки. Однако во времена Галилея точных секундомеров не было, да и любые механические часы по современным стандартам были весьма примитивны и неточны. Поэтому ученый первым делом разработал экспериментальный аппарат, позволяющий обойти эту проблему. Во-первых, он «разбавил» силу тяжести, замедлив время падения до разумных, с точки зрения имеющихся инструментов измерения, пределов, а именно — заставил тела скатываться по наклонной плоскости, а не просто падать отвесно. Затем он придумал, как обойти неточность современных ему механических часов, натянув на пути скатывающегося по наклонной поверхности шара ряд струн, чтобы он задевал их по дороге и можно было хронометрировать его движение по извлекаемым звукам. Раз за разом спуская шар по наклонной под рядом струн, Галилей перемещал струны, пока не добился, чтобы шар на всем своем пути, задевая натянутые струны, извлекал звуки через равные промежутки времени.

В конце концов Галилею удалось накопить достаточный объем экспериментальной информации о равноускоренном движении. Тело, стартующее из состояния покоя, далее движется так, как это описано в самом начале данной статьи. В переводе на язык математических символов равноускоренное движение описывается следующими уравнениями:

где a — ускорение, v — скорость, d — расстояние, пройденное телом за время t. Чтобы прочувствовать смысл этих уравнений, достаточно пристально пронаблюдать за падением предметов. Скорость падения зримо возрастает со временем, прошедшим с начала падения. Это следует из первого уравнения. Очевидно и то, что в процессе падения на прохождение первой части пути у тела уходит больше времени, чем на оставшуюся часть пути. Именно это и описывает вторая формула, поскольку из неё следует, что чем дольше тело ускоряется, тем больший отрезок пути оно преодолевает за одно и то же время.

Галилей сделал и еще одно важное наблюдение о теле, находящемся в состоянии свободного падения под воздействием силы гравитационного притяжения, хотя и не смог подтвердить его непосредственными измерениями. Экстраполировав результаты, полученные им при наблюдении скатывающихся по наклонной плоскости предметов, он сумел определить ускорение свободного падения тела на поверхность Земли. Ускорение свободного падения принято обозначать g, и оно равняется (приблизительно):

g = 9,8 м/с 2 (метра в секунду за секунду)

То есть, если уронить предмет из состояния покоя, за каждую секунду падения его скорость будет возрастать на 9,8 метра в секунду. На исходе первой секунды падения тело будет двигаться со скоростью 9,8 м/с, на исходе второй — со скоростью 2 × 9,8 = 18,6 м/с и так далее. Величина g определяет коэффициент ускорения падения тела, находящегося в непосредственной близости от земной поверхности, в связи с чем g принято называть ускорением свободного падения , или гравитационным ускорением .

Здесь следует сделать два важных замечания относительно полученных Галилеем результатов. Во-первых, ученый получил чисто экспериментальное значение величины g , ни на каких теоретических прогнозах не основывающееся. Значительно позже Исаак Ньютон в своих знаменитых работах показал, что величину g можно рассчитать теоретически, исходя из сочетания сформулированных им законов механики Ньютона и закона всемирного тяготения Ньютона . Именно первопроходческий труд Галилея и проложил дорогу последующим триумфальным открытиям Ньютона и формированию классической механики в её общеизвестном виде.

Второй важнейший момент состоит в том, что ускорение свободного падения не зависит от массы падающего тела. По сути, сила притяжения пропорциональна массе тела, но это полностью компенсируется большей инерцией, присущей более массивному телу (его нежеланию двигаться, если хотите), а посему (если не учитывать сопротивление воздуха) все тела падают с одинаковым ускорением. Это практическое заключение вступало в полное противоречие с умозрительными предсказаниями древних и средневековых натурфилософов, которые были уверены, что всякой вещи свойственно стремиться к центру мироздания (коим им, естественно, представлялся центр Земли) и что чем массивнее предмет, тем с большей скоростью он к этому центру устремляется.

Свое видение Галилей, конечно же, подкрепил экспериментальными данными, но вот опыта, который ему традиционно приписывают, он, скорее всего, вовсе не проводил. Согласно околонаучному фольклору, он сбрасывал предметы различной массы с «падающей» Пизанской башни, чтобы продемонстрировать, что они достигают поверхности земли одновременно. В этом случае, однако, Галилея ждало бы разочарование, поскольку более тяжелые предметы неизбежно падали бы на землю раньше легких из-за разницы в удельном сопротивлении воздуха. Если бы сбрасываемые с башни предметы были одного размера, сила сопротивления воздуха, тормозящая их падение, была бы одинаковой для всех предметов. При этом из законов Ньютона следует, что более легкие предметы затормаживались бы воздухом интенсивнее тяжелых и падали на землю позднее тяжелых предметов. А это, естественно, противоречило бы предсказанию Галилея.

См. также:

Суд над Галилеем


Суд римско-католической инквизиции над Галилеем - такой же стойкий околонаучный миф, как и яблоко, якобы упавшее на голову Ньютону. И, как обычно и бывает в мифологии, к действительности эта история имеет мало отношения. Если верить этому мифу, Галилей привел суду неопровержимые доказательства правильности взглядов Николая Коперника на устройство Солнечной системы, согласно которым Земля вращается вокруг Солнца, а не наоборот, а затем был сломлен Церковью, желавшей подавить эту теорию, и принужден публично отречься от своих взглядов. На самом же деле Коперник, будучи весьма изощренным церковным политиком, представил свою гелиоцентрическую теорию в таком виде, что она вполне удовлетворяла богословские авторитеты того времени (в частности, называя её не иначе, чем «гипотезой»). Теория Коперника широко обсуждалась до Галилея и учеными, и даже самими ватиканскими богословами.

В 1616 году Галилей опубликовал книгу «Звездный вестник» , в которой обобщил телескопические наблюдения и привел сильные доводы в пользу системы Коперника. Причем написана книга была на итальянском, а не на латыни, что сделало ее доступной не только ученым, но и широкому кругу образованных читателей. В ответ на упреки, что книга якобы противоречит церковным канонам, Коллегия кардиналов вызвала Галилея на свое заседание. Далее начинаются неясности, вызванные противоречивостью дошедших до нас свидетельств участников этого заседания. Согласно официальной версии, Галилею было указано на недопустимость дальнейших публичных обсуждений идей Коперника в иной форме, кроме как с указанием на то, что это всего лишь гипотеза, пока не будут представлены неопровержимые доказательства ее правильности. Галилей же стоит на том, что подобного предупреждения не получал.

Как бы то ни было, в 1632 году Галилей опубликовал работу , где привел развернутые аргументы в пользу гелиоцентрической системы Коперника, вложив при этом официальные возражения Папы в уста персонажа по имени Симпличо (по-итальянски «простак». - Прим. переводчика ). Вот тогда-то против Галилея и было впервые выдвинуто обвинение в «подозрении на ересь»; при этом нужно понимать, что в устах инквизиции это обвинение соотносится с обвинением в собственно «ереси», примерно так же, как в современном гражданском судопроизводстве обвинение в непреднамеренном убийстве соотносится с обвинением в предумышленном убийстве при отягчающих обстоятельствах. От подозрения в ереси Галилей себя очистил, публично заявив, что сам не верит в то, что написал, после чего остаток жизни провел всего лишь под домашним арестом у себя во Флоренции. (В 1992 году Римско-католическая церковь официально пересмотрела приговор суда на том основании, что судьи не сумели отделить вопросов веры от научных фактов.)

Так что мы выносим из всей этой истории? По моему личному разумению, она описывает не более чем умышленное раскручивание маховика неповоротливой бюрократической машины человеком, намеренно стремящимся к конфронтации с ней. (Мне, например, представляется, что у Совета кардиналов имелись в то время дела и поважней, чем разбирательство с ученым по поводу абстрактной космологической теории.) Правда тут еще и в том, что доводы Галилея в пользу системы Коперника на поверку вовсе не являются такими уж убедительными. Более того, с точки зрения современной науки можно сказать, что Галилей пришел к верному заключению путем ошибочных рассуждений. Суда над ученым это, естественно, не оправдывает, однако всё действо, в этой связи, предстает в ином - куда менее мифологическом - свете.

Galileo Galilei, 1564-1642

Итальянский ученый. Родился в Пизе. Галилея можно по праву назвать отцом современной экспериментальной науки. Его отец Винченцо Галилей был известным музыкантом и со временем переехал вместе с семьей во Флоренцию. Образование Галилео начал получать в Пизанском университете, где он числился на медицинском факультете, хотя большую часть времени уделял изучению математики. Его увлечение вылилось в то, что Галилей стал заведующим кафедрой математики этого университета.

После смерти отца Галилей переехал в Падую и занял должность профессора математики в местном университете (причина переезда, судя по всему, была прозаичной: в университете Падуи платили лучше, чем в Пизанском). В Падуе и определились три главных темы исследований, которые всю жизнь потом занимали ученого. Во-первых, Галилей начал исследование тел в состоянии свободного падения — работу, которая со временем приведет к настоящему перевороту в механике. Во-вторых, он заинтересовался новыми астрономическими идеями Николая Коперника (см. Принцип Коперника). Наконец, он изобрел инструмент под названием «пропорциональный компас», продажами которого в основном и обеспечивал себя материально (как и большинство изобретений Галилея, пропорциональный компас широко используется и в наши дни).

Зимой 1609-1610 года, используя телескоп собственной конструкции, построенный на новых идеях, зародившихся в умах голландских оптиков того времени, Галилей увлекся наблюдением за небесными телами. Не он первый, должно быть, занялся изучением траекторий планет, но именно он впервые широко опубликовал результаты своих наблюдений и выводы, которые из них следуют. Он наблюдал спутники Юпитера, горы на Луне, кольца Сатурна (хотя и составил неверное представление об их природе), фазы Венеры... Любого из этих открытий хватило бы, чтобы усомниться в древней теории Аристотеля, согласно которой Земля покоится в центре Вселенной, и поддержать новый взгляд на мир, предложенный Коперником. Его книга «Диалог о двух главнейших системах мира» — красноречивая защита Вселенной по Копернику. Именно взгляды Галилея на устройство мира, изложенные в этой книге, послужили основанием для его привлечения к суду по подозрению в ереси.

Уже после суда Галилей написал еще один фундаментальный труд «Беседы и математические доказательства, касающиеся двух новых отраслей науки» , где обобщаются его открытия в областях, которые сегодня принято называть материаловедением и кинематикой. Как и во всех других трудах ученого, в этой работе Галилей подчеркивает важность эксперимента как средства проверки теории.

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Вы сейчас здесь: Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Электромагнитные волны. Понятие электромагнитной волны. Свойства электромагнитных волн. Волновые явления
  • Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля
  • Квантовая физика. Гипотеза Планка. Явление фотоэффекта. Уравнение Эйнштейна. Фотоны. Квантовые постулаты Бора.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • 1) Аналитический способ.

    Считаем шоссе прямолинейным. Запишем уравнение движения велосипедиста. Так как велосипедист двигался равномерно, то его уравнение движения:

    (начало координат помещаем в точку старта, поэтому начальная координата велосипедиста равна нулю).

    Мотоциклист двигался равноускоренно. Он также начал движение с места старта, поэтому его начальная координата равна нулю, начальная скорость мотоциклиста также равна нулю (мотоциклист начал двигаться из состояния покоя).

    Учитывая, что мотоциклист начал движение на позже, уравнение движения мотоциклиста:

    При этом скорость мотоциклиста изменялась по закону:

    В момент, когда мотоциклист догнал велосипедиста их координаты равны, т.е. или:

    Решая это уравнение относительно , находим время встречи:

    Это квадратное уравнение. Определяем дискриминант:

    Определяем корни:

    Подставим в формулы числовые значения и вычислим:

    Второй корень отбрасываем как несоответствующий физическим условиям задачи: мотоциклист не мог догнать велосипедиста через 0,37 с после начала движения велосипедиста, так как сам покинул точку старта только через 2 с после того, как стартовал велосипедист.

    Таким образом, время, когда мотоциклист догнал велосипедиста:

    Подставим это значение времени в формулу закона изменения скорости мотоциклиста и найдем значение его скорости в этот момент:

    2) Графический способ.

    На одной координатной плоскости строим графики изменения со временем координат велосипедиста и мотоциклиста (график для координаты велосипедиста — красным цветом, для мотоциклиста — зеленым). Видно, что зависимость координаты от времени для велосипедиста — линейная функция, и график этой функции — прямая (случай равномерного прямолинейного движения). Мотоциклист двигался равноускоренно, поэтому зависимость координаты мотоциклиста от времени — квадратичная функция, графиком которой является парабола.

    В этой теме мы рассмотрим очень особенный вид неравномерного движения. Исходя из противопоставления равномерному движению , неравномерное движение - это движение с неодинаковой скоростью, по любой траектории . В чем особенность равноускоренного движения? Это неравномерное движение, но которое "равно ускоряется" . Ускорение у нас ассоциируется с увеличением скорости. Вспомним про слово "равно", получим равное увеличение скорости. А как понимать "равное увеличение скорости", как оценить скорость равно увеличивается или нет? Для этого нам потребуется засечь время, оценить скорость через один и тот же интервал времени. Например, машина начинает двигаться, за первые две секунды она развивает скорость до 10 м/с, за следующие две секунды 20 м/с, еще через две секунды она уже двигается со скоростью 30 м/с. Каждые две секунды скорость увеличивается и каждый раз на 10 м/с. Это и есть равноускоренное движение.


    Физическая величина, характеризующая то, на сколько каждый раз увеличивается скорость называется ускорением.

    Можно ли движение велосипедиста считать равноускоренным, если после остановки в первую минуту его скорость 7км/ч, во вторую - 9км/ч, в третью 12км/ч? Нельзя! Велосипедист ускоряется, но не одинаково, сначала ускорился на 7км/ч (7-0), потом на 2 км/ч (9-7), затем на 3 км/ч (12-9).

    Обычно движение с возрастающей по модулю скоростью называют ускоренным движением. Движение же с убывающей скоростью - замедленным движением. Но физики любое движение с изменяющейся скоростью называют ускоренным движением. Трогается ли автомобиль с места (скорость растет!), или тормозит (скорость уменьшается!), в любом случае он движется с ускорением.

    Равноускоренное движение - это такое движение тела, при котором его скорость за любые равные промежутки времени изменяется (может увеличиваться или уменьшаться) одинаково

    Ускорение тела

    Ускорение характеризует быстроту изменения скорости. Это число, на которое изменяется скорость за каждую секунду. Если ускорение тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет ее (при торможении). Ускорение - это физическая векторная величина , численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

    Определим ускорение в следующей задаче. В начальный момент времени скорость теплохода была 3 м/с, в конце первой секунды скорость теплохода стала 5 м/с, в конце второй - 7м/с, в конце третьей 9 м/с и т.д. Очевидно, . Но как мы определили? Мы рассматриваем разницу скоростей за одну секунду. В первую секунду 5-3=2, во вторую секунду 7-5=2, в третью 9-7=2. А как быть, если скорости даны не за каждую секунду? Такая задача: начальная скорость теплохода 3 м/с, в конце второй секунды - 7 м/с, в конце четвертой 11 м/с.В этом случае необходимо 11-7= 4, затем 4/2=2. Разницу скоростей мы делим на промежуток времени.


    Эту формулу чаще всего при решении задач применяют в видоизмененном виде:

    Формула записана не в векторном виде, поэтому знак "+" пишем, когда тело ускоряется, знак "-" - когда замедляется.

    Направление вектора ускорения

    Направление вектора ускорения изображено на рисунках


    На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.

    При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.


    На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.

    При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.

    Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на "-2м/с". 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.

    При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком "минус"!!!

    Перемещение при равноускоренном движении

    Дополнительная формула, которую называют безвременной

    Формула в координатах


    Связь со средней скоростью

    При равноускоренном движении среднюю скорость можно рассчитывать как среднеарифметическое начальной и конечной скорости

    Из этого правила следует формула, которую очень удобно использовать при решении многих задач

    Соотношение путей

    Если тело движется равноускоренно, начальная скорость нулевая, то пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел.

    Главное запомнить

    1) Что такое равноускоренное движение;
    2) Что характеризует ускорение;
    3) Ускорение - вектор. Если тело разгоняется ускорение положительное, если замедляется - ускорение отрицательное;
    3) Направление вектора ускорения;
    4) Формулы, единицы измерения в СИ

    Упражнения

    Два поезда идут навстречу друг другу: один - ускоренно на север, другой - замедленно на юг. Как направлены ускорения поездов?

    Одинаково на север. Потому что у первого поезда ускорение совпадает по направлению с движением, а у второго - противоположное движению (он замедляется).